Cargando…

Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata

A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA) was delivered by the hairy root transformation technique, and a successful transformation was monito...

Descripción completa

Detalles Bibliográficos
Autores principales: Kirchner, Thomas W., Niehaus, Markus, Debener, Thomas, Schenk, Manfred K., Herde, Marco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609758/
https://www.ncbi.nlm.nih.gov/pubmed/28937992
http://dx.doi.org/10.1371/journal.pone.0185429
_version_ 1783265662073831424
author Kirchner, Thomas W.
Niehaus, Markus
Debener, Thomas
Schenk, Manfred K.
Herde, Marco
author_facet Kirchner, Thomas W.
Niehaus, Markus
Debener, Thomas
Schenk, Manfred K.
Herde, Marco
author_sort Kirchner, Thomas W.
collection PubMed
description A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA) was delivered by the hairy root transformation technique, and a successful transformation was monitored by GFP fluorescence. PAGE analysis of an amplified region, presumably containing the deletions and insertions, demonstrated up to seven different indels in one transgenic root and in all analyzed roots a wildtype allele of the modified gene was not detectable. Interestingly, many of these mutations consisted of relatively large indels with up to 112 bp. The exact size of the deletions was determined to allow an estimation whether the targeted gene was not functional due to a considerable deletion or a frame shift within the open reading frame. This allowed a direct phenotypic assessment of the previously characterized roots and, in fact, deletions in FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 1 (BcFLA1)–a gene with an expression pattern consistent with a role in root hair architecture–resulted in shorter root hairs compared to control roots ectopically expressing an allele of the gene that cannot be targeted by the gRNA in parallel to the CRISPR construct. As an additional line of evidence, we monitored BcFLA1 expression with qPCR and detected a significant reduction of the transcript in roots with an active CRISPR construct compared to the control, although residual amounts of the transcript were detected, possibly due to inefficient nonsense-mediated mRNA decay. Additionally, the presence of deletions and insertions were verified by Sanger sequencing of the respective amplicons. In summary we demonstrate the successful application of CRISPR/Cas9 in hairy roots of B. carinata, the proof of its effectiveness and its effect on the root hair phenotype. This study paves the way for experimental strategies involving the phenotypic assessment of gene lesions by CRISPR which do not require germline transmission.
format Online
Article
Text
id pubmed-5609758
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-56097582017-10-09 Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata Kirchner, Thomas W. Niehaus, Markus Debener, Thomas Schenk, Manfred K. Herde, Marco PLoS One Research Article A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA) was delivered by the hairy root transformation technique, and a successful transformation was monitored by GFP fluorescence. PAGE analysis of an amplified region, presumably containing the deletions and insertions, demonstrated up to seven different indels in one transgenic root and in all analyzed roots a wildtype allele of the modified gene was not detectable. Interestingly, many of these mutations consisted of relatively large indels with up to 112 bp. The exact size of the deletions was determined to allow an estimation whether the targeted gene was not functional due to a considerable deletion or a frame shift within the open reading frame. This allowed a direct phenotypic assessment of the previously characterized roots and, in fact, deletions in FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 1 (BcFLA1)–a gene with an expression pattern consistent with a role in root hair architecture–resulted in shorter root hairs compared to control roots ectopically expressing an allele of the gene that cannot be targeted by the gRNA in parallel to the CRISPR construct. As an additional line of evidence, we monitored BcFLA1 expression with qPCR and detected a significant reduction of the transcript in roots with an active CRISPR construct compared to the control, although residual amounts of the transcript were detected, possibly due to inefficient nonsense-mediated mRNA decay. Additionally, the presence of deletions and insertions were verified by Sanger sequencing of the respective amplicons. In summary we demonstrate the successful application of CRISPR/Cas9 in hairy roots of B. carinata, the proof of its effectiveness and its effect on the root hair phenotype. This study paves the way for experimental strategies involving the phenotypic assessment of gene lesions by CRISPR which do not require germline transmission. Public Library of Science 2017-09-22 /pmc/articles/PMC5609758/ /pubmed/28937992 http://dx.doi.org/10.1371/journal.pone.0185429 Text en © 2017 Kirchner et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Kirchner, Thomas W.
Niehaus, Markus
Debener, Thomas
Schenk, Manfred K.
Herde, Marco
Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata
title Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata
title_full Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata
title_fullStr Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata
title_full_unstemmed Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata
title_short Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata
title_sort efficient generation of mutations mediated by crispr/cas9 in the hairy root transformation system of brassica carinata
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609758/
https://www.ncbi.nlm.nih.gov/pubmed/28937992
http://dx.doi.org/10.1371/journal.pone.0185429
work_keys_str_mv AT kirchnerthomasw efficientgenerationofmutationsmediatedbycrisprcas9inthehairyroottransformationsystemofbrassicacarinata
AT niehausmarkus efficientgenerationofmutationsmediatedbycrisprcas9inthehairyroottransformationsystemofbrassicacarinata
AT debenerthomas efficientgenerationofmutationsmediatedbycrisprcas9inthehairyroottransformationsystemofbrassicacarinata
AT schenkmanfredk efficientgenerationofmutationsmediatedbycrisprcas9inthehairyroottransformationsystemofbrassicacarinata
AT herdemarco efficientgenerationofmutationsmediatedbycrisprcas9inthehairyroottransformationsystemofbrassicacarinata