Cargando…
Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata
A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA) was delivered by the hairy root transformation technique, and a successful transformation was monito...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609758/ https://www.ncbi.nlm.nih.gov/pubmed/28937992 http://dx.doi.org/10.1371/journal.pone.0185429 |
_version_ | 1783265662073831424 |
---|---|
author | Kirchner, Thomas W. Niehaus, Markus Debener, Thomas Schenk, Manfred K. Herde, Marco |
author_facet | Kirchner, Thomas W. Niehaus, Markus Debener, Thomas Schenk, Manfred K. Herde, Marco |
author_sort | Kirchner, Thomas W. |
collection | PubMed |
description | A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA) was delivered by the hairy root transformation technique, and a successful transformation was monitored by GFP fluorescence. PAGE analysis of an amplified region, presumably containing the deletions and insertions, demonstrated up to seven different indels in one transgenic root and in all analyzed roots a wildtype allele of the modified gene was not detectable. Interestingly, many of these mutations consisted of relatively large indels with up to 112 bp. The exact size of the deletions was determined to allow an estimation whether the targeted gene was not functional due to a considerable deletion or a frame shift within the open reading frame. This allowed a direct phenotypic assessment of the previously characterized roots and, in fact, deletions in FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 1 (BcFLA1)–a gene with an expression pattern consistent with a role in root hair architecture–resulted in shorter root hairs compared to control roots ectopically expressing an allele of the gene that cannot be targeted by the gRNA in parallel to the CRISPR construct. As an additional line of evidence, we monitored BcFLA1 expression with qPCR and detected a significant reduction of the transcript in roots with an active CRISPR construct compared to the control, although residual amounts of the transcript were detected, possibly due to inefficient nonsense-mediated mRNA decay. Additionally, the presence of deletions and insertions were verified by Sanger sequencing of the respective amplicons. In summary we demonstrate the successful application of CRISPR/Cas9 in hairy roots of B. carinata, the proof of its effectiveness and its effect on the root hair phenotype. This study paves the way for experimental strategies involving the phenotypic assessment of gene lesions by CRISPR which do not require germline transmission. |
format | Online Article Text |
id | pubmed-5609758 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56097582017-10-09 Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata Kirchner, Thomas W. Niehaus, Markus Debener, Thomas Schenk, Manfred K. Herde, Marco PLoS One Research Article A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA) was delivered by the hairy root transformation technique, and a successful transformation was monitored by GFP fluorescence. PAGE analysis of an amplified region, presumably containing the deletions and insertions, demonstrated up to seven different indels in one transgenic root and in all analyzed roots a wildtype allele of the modified gene was not detectable. Interestingly, many of these mutations consisted of relatively large indels with up to 112 bp. The exact size of the deletions was determined to allow an estimation whether the targeted gene was not functional due to a considerable deletion or a frame shift within the open reading frame. This allowed a direct phenotypic assessment of the previously characterized roots and, in fact, deletions in FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 1 (BcFLA1)–a gene with an expression pattern consistent with a role in root hair architecture–resulted in shorter root hairs compared to control roots ectopically expressing an allele of the gene that cannot be targeted by the gRNA in parallel to the CRISPR construct. As an additional line of evidence, we monitored BcFLA1 expression with qPCR and detected a significant reduction of the transcript in roots with an active CRISPR construct compared to the control, although residual amounts of the transcript were detected, possibly due to inefficient nonsense-mediated mRNA decay. Additionally, the presence of deletions and insertions were verified by Sanger sequencing of the respective amplicons. In summary we demonstrate the successful application of CRISPR/Cas9 in hairy roots of B. carinata, the proof of its effectiveness and its effect on the root hair phenotype. This study paves the way for experimental strategies involving the phenotypic assessment of gene lesions by CRISPR which do not require germline transmission. Public Library of Science 2017-09-22 /pmc/articles/PMC5609758/ /pubmed/28937992 http://dx.doi.org/10.1371/journal.pone.0185429 Text en © 2017 Kirchner et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Kirchner, Thomas W. Niehaus, Markus Debener, Thomas Schenk, Manfred K. Herde, Marco Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata |
title | Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata |
title_full | Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata |
title_fullStr | Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata |
title_full_unstemmed | Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata |
title_short | Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata |
title_sort | efficient generation of mutations mediated by crispr/cas9 in the hairy root transformation system of brassica carinata |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609758/ https://www.ncbi.nlm.nih.gov/pubmed/28937992 http://dx.doi.org/10.1371/journal.pone.0185429 |
work_keys_str_mv | AT kirchnerthomasw efficientgenerationofmutationsmediatedbycrisprcas9inthehairyroottransformationsystemofbrassicacarinata AT niehausmarkus efficientgenerationofmutationsmediatedbycrisprcas9inthehairyroottransformationsystemofbrassicacarinata AT debenerthomas efficientgenerationofmutationsmediatedbycrisprcas9inthehairyroottransformationsystemofbrassicacarinata AT schenkmanfredk efficientgenerationofmutationsmediatedbycrisprcas9inthehairyroottransformationsystemofbrassicacarinata AT herdemarco efficientgenerationofmutationsmediatedbycrisprcas9inthehairyroottransformationsystemofbrassicacarinata |