Cargando…

Modelling and Realization of a Water-Gated Field Effect Transistor (WG-FET) Using 16-nm-Thick Mono-Si Film

We introduced a novel water-gated field effect transistor (WG-FET) which uses 16-nm-thick mono-Si film as active layer. WG-FET devices use electrical double layer (EDL) as gate insulator and operate under 1 V without causing any electrochemical reactions. Performance parameters based on voltage dist...

Descripción completa

Detalles Bibliográficos
Autores principales: Sonmez, Bedri Gurkan, Ertop, Ozan, Mutlu, Senol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610243/
https://www.ncbi.nlm.nih.gov/pubmed/28939829
http://dx.doi.org/10.1038/s41598-017-12439-8
Descripción
Sumario:We introduced a novel water-gated field effect transistor (WG-FET) which uses 16-nm-thick mono-Si film as active layer. WG-FET devices use electrical double layer (EDL) as gate insulator and operate under 1 V without causing any electrochemical reactions. Performance parameters based on voltage distribution on EDL are extracted and current-voltage relations are modelled. Both probe- and planar-gate WG-FETs with insulated and uninsulated source-drain electrodes are simulated, fabricated and tested. Best on/off ratios are measured for probe-gate devices as 23,000 A/A and 85,000 A/A with insulated and uninsulated source-drain electrodes, respectively. Planar-gate devices with source-drain insulation had inferior on/off ratio of 1,100 A/A with 600 μm gate distance and it decreased to 45 A/A when gate distance is increased to 3000 μm. Without source-drain electrode insulation, proper transistor operation is not obtained with planar-gate devices. All measurement results were in agreement with theoretical models. WG-FET is a promising device platform for microfluidic applications where sensors and read-out circuits can be integrated at transistor level.