Cargando…

Identification of a specific agonist of human TAS2R14 from Radix Bupleuri through virtual screening, functional evaluation and binding studies

Bitter taste receptors (TAS2Rs) have attracted a great deal of interest because of their recently described bronchodilator and anti-inflammatory properties. The aim of this study was to identify natural direct TAS2R14 agonists from Radix Bupleuri that can inhibit mast cell degranulation. A ligand-ba...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yuxin, Wang, Xing, Li, Xi, Peng, Sha, Wang, Shifeng, Huang, Christopher Z., Huang, Corine Z., Zhang, Qiao, Li, Dai, Jiang, Jun, Ouyang, Qin, Zhang, Yanling, Li, Shiyou, Qiao, Yanjiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610306/
https://www.ncbi.nlm.nih.gov/pubmed/28939897
http://dx.doi.org/10.1038/s41598-017-11720-0
Descripción
Sumario:Bitter taste receptors (TAS2Rs) have attracted a great deal of interest because of their recently described bronchodilator and anti-inflammatory properties. The aim of this study was to identify natural direct TAS2R14 agonists from Radix Bupleuri that can inhibit mast cell degranulation. A ligand-based virtual screening was conducted on a library of chemicals contained in compositions of Radix Bupleuri, and these analyses were followed by cell-based functional validation through a HEK293-TAS2R14-G16gust44 cell line and IgE-induced mast cell degranulation assays, respectively. Saikosaponin b (SSb) was confirmed for the first time to be a specific agonist of TAS2R14 and had an EC(50) value of 4.9 μM. A molecular docking study showed that SSb could directly bind to a TAS2R14 model through H-bond interactions with Arg160, Ser170 and Glu259. Moreover, SSb showed the ability to inhibit IgE-induced mast cell degranulation, as measured with a β-hexosaminidase release model and real-time cell analysis (RTCA). In a cytotoxicity bioassay, SSb showed no significant cytotoxicity to HEK293 cells within 24 hours. This study demonstrated that SSb is a direct TAS2R14 agonist that inhibit IgE-induced mast cell degranulation. Although the target and in vitro bioactivity of SSb were revealed in this study, it still need in vivo study to further verify the anti-asthma activity of SSb.