Cargando…

Discovery of a Low Toxicity O-GlcNAc Transferase (OGT) Inhibitor by Structure-based Virtual Screening of Natural Products

O-GlcNAc transferase (OGT) plays an important role in regulating numerous cellular processes through reversible post-translational modification of nuclear and cytoplasmic proteins. However, the function of O-GlcNAcylation is still not well understood. Cell permeable OGT inhibitors are needed to mani...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yubo, Ren, Yang, Cao, Yu, Huang, Huang, Wu, Qiong, Li, Wenli, Wu, Sijin, Zhang, Jianing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615061/
https://www.ncbi.nlm.nih.gov/pubmed/28951553
http://dx.doi.org/10.1038/s41598-017-12522-0
Descripción
Sumario:O-GlcNAc transferase (OGT) plays an important role in regulating numerous cellular processes through reversible post-translational modification of nuclear and cytoplasmic proteins. However, the function of O-GlcNAcylation is still not well understood. Cell permeable OGT inhibitors are needed to manipulate O-GlcNAcylation levels and clarify the regulatory mechanism of this modification. Here, we report a specific natural-product OGT inhibitor (L01), which was identified from a structure-based virtual screening analysis. L01 inhibited O-GlcNAcylation both in vitro and in cells without significantly altering cell surface glycans. Molecular dynamics and site-directed mutagenesis indicated a new binding mechanism in which L01 could interact with Asn557 near the UDP binding pocket of OGT. This residue may contribute to the specificity of L01. Furthermore, as a specific OGT inhibitor, L01 produced low toxicity in cellular and zebrafish models. The identification of L01 validates structure-based virtual screening approaches for the discovery of OGT inhibitors. L01 can also serve as a chemical tool to further characterize O-GlcNAcylation functions or a new molecular core for structure-activity relationship studies to optimize the biochemical potencies.