Cargando…

EZH2‐mediated repression of Dkk1 promotes hepatic stellate cell activation and hepatic fibrosis

EZH2, a histone H3 lysine‐27‐specific methyltransferase, is involved in diverse physiological and pathological processes including cell proliferation and differentiation. However, the role of EZH2 in liver fibrosis is largely unknown. In this study, it was identified that EZH2 promoted Wnt pathway‐s...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yang, Chen, Xiao‐xia, Li, Wan‐xia, Wu, Xiao‐qin, Huang, Cheng, Xie, Juan, Zhao, Yu‐xin, Meng, Xiao‐ming, Li, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618695/
https://www.ncbi.nlm.nih.gov/pubmed/28332284
http://dx.doi.org/10.1111/jcmm.13153
Descripción
Sumario:EZH2, a histone H3 lysine‐27‐specific methyltransferase, is involved in diverse physiological and pathological processes including cell proliferation and differentiation. However, the role of EZH2 in liver fibrosis is largely unknown. In this study, it was identified that EZH2 promoted Wnt pathway‐stimulated fibroblasts in vitro and in vivo by repressing Dkk‐1, which is a Wnt pathway antagonist. The expression of EZH2 was increased in CCl(4)‐induced rat liver and primary HSCs as well as TGF‐β1‐treated HSC‐T6, whereas the expression of Dkk1 was reduced. Silencing of EZH2 prevented TGF‐β1‐induced proliferation of HSC‐T6 cells and the expression of α‐SMA. In addition, knockdown of Dkk1 promoted TGF‐β1‐induced activation of HSCs. Moreover, silencing of EZH2 could restore the repression of Dkk‐1 through trimethylation of H3K27me3 in TGF‐β1‐treated HSC‐T6 cells. Interestingly, inhibition of EZH2 had almost no effect on the activation of HSC when Dkk1 was silenced. Collectively, EZH2‐mediated repression of Dkk1 promotes the activation of Wnt/β‐catenin pathway, which is an essential event for HSC activation.