Cargando…

Epigenomic study identifies a novel mesenchyme homeobox2-GLI1 transcription axis involved in cancer drug resistance, overall survival and therapy prognosis in lung cancer patients

Several homeobox-related gene (HOX) transcription factors such as mesenchyme HOX-2 (MEOX2) have previously been associated with cancer drug resistance, malignant progression and/or clinical prognostic responses in lung cancer patients; however, the mechanisms involved in these responses have yet to...

Descripción completa

Detalles Bibliográficos
Autores principales: Armas-López, Leonel, Piña-Sánchez, Patricia, Arrieta, Oscar, de Alba, Enrique Guzman, Ortiz-Quintero, Blanca, Santillán-Doherty, Patricio, Christiani, David C., Zúñiga, Joaquín, Ávila-Moreno, Federico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620156/
https://www.ncbi.nlm.nih.gov/pubmed/28978016
http://dx.doi.org/10.18632/oncotarget.17715
_version_ 1783267524884824064
author Armas-López, Leonel
Piña-Sánchez, Patricia
Arrieta, Oscar
de Alba, Enrique Guzman
Ortiz-Quintero, Blanca
Santillán-Doherty, Patricio
Christiani, David C.
Zúñiga, Joaquín
Ávila-Moreno, Federico
author_facet Armas-López, Leonel
Piña-Sánchez, Patricia
Arrieta, Oscar
de Alba, Enrique Guzman
Ortiz-Quintero, Blanca
Santillán-Doherty, Patricio
Christiani, David C.
Zúñiga, Joaquín
Ávila-Moreno, Federico
author_sort Armas-López, Leonel
collection PubMed
description Several homeobox-related gene (HOX) transcription factors such as mesenchyme HOX-2 (MEOX2) have previously been associated with cancer drug resistance, malignant progression and/or clinical prognostic responses in lung cancer patients; however, the mechanisms involved in these responses have yet to be elucidated. Here, an epigenomic strategy was implemented to identify novel MEOX2 gene promoter transcription targets and propose a new molecular mechanism underlying lung cancer drug resistance and poor clinical prognosis. Chromatin immunoprecipitation (ChIP) assays derived from non-small cell lung carcinomas (NSCLC) hybridized on gene promoter tiling arrays and bioinformatics analyses were performed, and quantitative, functional and clinical validation were also carried out. We statistically identified a common profile consisting of 78 gene promoter targets, including Hedgehog-GLI1 gene promoter sequences (FDR≤0.1 and FDR≤0.2). The GLI-1 gene promoter region from −2,192 to −109 was occupied by MEOX2, accompanied by transcriptionally active RNA Pol II and was epigenetically linked to the active histones H3K27Ac and H3K4me3; these associations were quantitatively validated. Moreover, siRNA genetic silencing assays identified a MEOX2-GLI1 axis involved in cellular cytotoxic resistance to cisplatinum in a dose-dependent manner, as well as cellular migration and proliferation. Finally, Kaplan-Maier survival analyses identified significant MEOX2-dependent GLI-1 protein expression associated with clinical progression and poorer overall survival using an independent cohort of NSCLC patients undergoing platinum-based oncological therapy with both epidermal growth factor receptor (EGFR)-non-mutated and EGFR-mutated status. In conclusion, this is the first study to investigate epigenome-wide MEOX2-transcription factor occupation identifying a novel overexpressed MEOX2-GLI1 axis and its clinical association with platinum-based cancer drug resistance and EGFR-tyrosine kinase inhibitor (TKI)-based therapy responses in NSCLC patients.
format Online
Article
Text
id pubmed-5620156
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Impact Journals LLC
record_format MEDLINE/PubMed
spelling pubmed-56201562017-10-03 Epigenomic study identifies a novel mesenchyme homeobox2-GLI1 transcription axis involved in cancer drug resistance, overall survival and therapy prognosis in lung cancer patients Armas-López, Leonel Piña-Sánchez, Patricia Arrieta, Oscar de Alba, Enrique Guzman Ortiz-Quintero, Blanca Santillán-Doherty, Patricio Christiani, David C. Zúñiga, Joaquín Ávila-Moreno, Federico Oncotarget Research Paper Several homeobox-related gene (HOX) transcription factors such as mesenchyme HOX-2 (MEOX2) have previously been associated with cancer drug resistance, malignant progression and/or clinical prognostic responses in lung cancer patients; however, the mechanisms involved in these responses have yet to be elucidated. Here, an epigenomic strategy was implemented to identify novel MEOX2 gene promoter transcription targets and propose a new molecular mechanism underlying lung cancer drug resistance and poor clinical prognosis. Chromatin immunoprecipitation (ChIP) assays derived from non-small cell lung carcinomas (NSCLC) hybridized on gene promoter tiling arrays and bioinformatics analyses were performed, and quantitative, functional and clinical validation were also carried out. We statistically identified a common profile consisting of 78 gene promoter targets, including Hedgehog-GLI1 gene promoter sequences (FDR≤0.1 and FDR≤0.2). The GLI-1 gene promoter region from −2,192 to −109 was occupied by MEOX2, accompanied by transcriptionally active RNA Pol II and was epigenetically linked to the active histones H3K27Ac and H3K4me3; these associations were quantitatively validated. Moreover, siRNA genetic silencing assays identified a MEOX2-GLI1 axis involved in cellular cytotoxic resistance to cisplatinum in a dose-dependent manner, as well as cellular migration and proliferation. Finally, Kaplan-Maier survival analyses identified significant MEOX2-dependent GLI-1 protein expression associated with clinical progression and poorer overall survival using an independent cohort of NSCLC patients undergoing platinum-based oncological therapy with both epidermal growth factor receptor (EGFR)-non-mutated and EGFR-mutated status. In conclusion, this is the first study to investigate epigenome-wide MEOX2-transcription factor occupation identifying a novel overexpressed MEOX2-GLI1 axis and its clinical association with platinum-based cancer drug resistance and EGFR-tyrosine kinase inhibitor (TKI)-based therapy responses in NSCLC patients. Impact Journals LLC 2017-05-09 /pmc/articles/PMC5620156/ /pubmed/28978016 http://dx.doi.org/10.18632/oncotarget.17715 Text en Copyright: © 2017 Armas-López et al. http://creativecommons.org/licenses/by/3.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Research Paper
Armas-López, Leonel
Piña-Sánchez, Patricia
Arrieta, Oscar
de Alba, Enrique Guzman
Ortiz-Quintero, Blanca
Santillán-Doherty, Patricio
Christiani, David C.
Zúñiga, Joaquín
Ávila-Moreno, Federico
Epigenomic study identifies a novel mesenchyme homeobox2-GLI1 transcription axis involved in cancer drug resistance, overall survival and therapy prognosis in lung cancer patients
title Epigenomic study identifies a novel mesenchyme homeobox2-GLI1 transcription axis involved in cancer drug resistance, overall survival and therapy prognosis in lung cancer patients
title_full Epigenomic study identifies a novel mesenchyme homeobox2-GLI1 transcription axis involved in cancer drug resistance, overall survival and therapy prognosis in lung cancer patients
title_fullStr Epigenomic study identifies a novel mesenchyme homeobox2-GLI1 transcription axis involved in cancer drug resistance, overall survival and therapy prognosis in lung cancer patients
title_full_unstemmed Epigenomic study identifies a novel mesenchyme homeobox2-GLI1 transcription axis involved in cancer drug resistance, overall survival and therapy prognosis in lung cancer patients
title_short Epigenomic study identifies a novel mesenchyme homeobox2-GLI1 transcription axis involved in cancer drug resistance, overall survival and therapy prognosis in lung cancer patients
title_sort epigenomic study identifies a novel mesenchyme homeobox2-gli1 transcription axis involved in cancer drug resistance, overall survival and therapy prognosis in lung cancer patients
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620156/
https://www.ncbi.nlm.nih.gov/pubmed/28978016
http://dx.doi.org/10.18632/oncotarget.17715
work_keys_str_mv AT armaslopezleonel epigenomicstudyidentifiesanovelmesenchymehomeobox2gli1transcriptionaxisinvolvedincancerdrugresistanceoverallsurvivalandtherapyprognosisinlungcancerpatients
AT pinasanchezpatricia epigenomicstudyidentifiesanovelmesenchymehomeobox2gli1transcriptionaxisinvolvedincancerdrugresistanceoverallsurvivalandtherapyprognosisinlungcancerpatients
AT arrietaoscar epigenomicstudyidentifiesanovelmesenchymehomeobox2gli1transcriptionaxisinvolvedincancerdrugresistanceoverallsurvivalandtherapyprognosisinlungcancerpatients
AT dealbaenriqueguzman epigenomicstudyidentifiesanovelmesenchymehomeobox2gli1transcriptionaxisinvolvedincancerdrugresistanceoverallsurvivalandtherapyprognosisinlungcancerpatients
AT ortizquinteroblanca epigenomicstudyidentifiesanovelmesenchymehomeobox2gli1transcriptionaxisinvolvedincancerdrugresistanceoverallsurvivalandtherapyprognosisinlungcancerpatients
AT santillandohertypatricio epigenomicstudyidentifiesanovelmesenchymehomeobox2gli1transcriptionaxisinvolvedincancerdrugresistanceoverallsurvivalandtherapyprognosisinlungcancerpatients
AT christianidavidc epigenomicstudyidentifiesanovelmesenchymehomeobox2gli1transcriptionaxisinvolvedincancerdrugresistanceoverallsurvivalandtherapyprognosisinlungcancerpatients
AT zunigajoaquin epigenomicstudyidentifiesanovelmesenchymehomeobox2gli1transcriptionaxisinvolvedincancerdrugresistanceoverallsurvivalandtherapyprognosisinlungcancerpatients
AT avilamorenofederico epigenomicstudyidentifiesanovelmesenchymehomeobox2gli1transcriptionaxisinvolvedincancerdrugresistanceoverallsurvivalandtherapyprognosisinlungcancerpatients