Cargando…
Vitamin D deficiency causes insulin resistance by provoking oxidative stress in hepatocytes
Vitamin D deficiency could cause insulin resistance. However, the underlying mechanisms are unclear. The 1α-Hydroxylase [“1α(OH)ase”] is a key enzyme for activate vitamin D3 synthesis. Here, we show that 1α(OH)ase stable knockdown by targeted shRNA led to vitamin D3 depletion in L02 hepatocytes. 1α(...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620196/ https://www.ncbi.nlm.nih.gov/pubmed/28978056 http://dx.doi.org/10.18632/oncotarget.18754 |
Sumario: | Vitamin D deficiency could cause insulin resistance. However, the underlying mechanisms are unclear. The 1α-Hydroxylase [“1α(OH)ase”] is a key enzyme for activate vitamin D3 synthesis. Here, we show that 1α(OH)ase stable knockdown by targeted shRNA led to vitamin D3 depletion in L02 hepatocytes. 1α(OH)ase silence also inhibited insulin-induced downstream signaling (IRS-1, ERK and AKT) transduction and glucose transporter 4 expression. Further, 1α(OH)ase shRNA in L02 hepatocytes led to significant reactive oxygen species production, p53-p21 activation and DNA damages. Such effects were almost completely reversed with co-treatment of n-acetylcysteine, which is an established anti-oxidant. Remarkably, insulin-induced downstream signaling transduction and glucose transporter 4 expression were recovered with n-acetylcysteine co-treatment in 1α(OH)ase-silenced L02 hepatocytes. Together, our results suggest that vitamin D deficiency-induced insulin resistance is possibly caused by oxidative stress in hepatocytes. |
---|