Cargando…
Stem Cell Differentiation as a Non-Markov Stochastic Process
Pluripotent stem cells can self-renew in culture and differentiate along all somatic lineages in vivo. While much is known about the molecular basis of pluripotency, the mechanisms of differentiation remain unclear. Here, we profile individual mouse embryonic stem cells as they progress along the ne...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5624514/ https://www.ncbi.nlm.nih.gov/pubmed/28957659 http://dx.doi.org/10.1016/j.cels.2017.08.009 |
_version_ | 1783268249358565376 |
---|---|
author | Stumpf, Patrick S. Smith, Rosanna C.G. Lenz, Michael Schuppert, Andreas Müller, Franz-Josef Babtie, Ann Chan, Thalia E. Stumpf, Michael P.H. Please, Colin P. Howison, Sam D. Arai, Fumio MacArthur, Ben D. |
author_facet | Stumpf, Patrick S. Smith, Rosanna C.G. Lenz, Michael Schuppert, Andreas Müller, Franz-Josef Babtie, Ann Chan, Thalia E. Stumpf, Michael P.H. Please, Colin P. Howison, Sam D. Arai, Fumio MacArthur, Ben D. |
author_sort | Stumpf, Patrick S. |
collection | PubMed |
description | Pluripotent stem cells can self-renew in culture and differentiate along all somatic lineages in vivo. While much is known about the molecular basis of pluripotency, the mechanisms of differentiation remain unclear. Here, we profile individual mouse embryonic stem cells as they progress along the neuronal lineage. We observe that cells pass from the pluripotent state to the neuronal state via an intermediate epiblast-like state. However, analysis of the rate at which cells enter and exit these observed cell states using a hidden Markov model indicates the presence of a chain of unobserved molecular states that each cell transits through stochastically in sequence. This chain of hidden states allows individual cells to record their position on the differentiation trajectory, thereby encoding a simple form of cellular memory. We suggest a statistical mechanics interpretation of these results that distinguishes between functionally distinct cellular “macrostates” and functionally similar molecular “microstates” and propose a model of stem cell differentiation as a non-Markov stochastic process. |
format | Online Article Text |
id | pubmed-5624514 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-56245142017-10-10 Stem Cell Differentiation as a Non-Markov Stochastic Process Stumpf, Patrick S. Smith, Rosanna C.G. Lenz, Michael Schuppert, Andreas Müller, Franz-Josef Babtie, Ann Chan, Thalia E. Stumpf, Michael P.H. Please, Colin P. Howison, Sam D. Arai, Fumio MacArthur, Ben D. Cell Syst Article Pluripotent stem cells can self-renew in culture and differentiate along all somatic lineages in vivo. While much is known about the molecular basis of pluripotency, the mechanisms of differentiation remain unclear. Here, we profile individual mouse embryonic stem cells as they progress along the neuronal lineage. We observe that cells pass from the pluripotent state to the neuronal state via an intermediate epiblast-like state. However, analysis of the rate at which cells enter and exit these observed cell states using a hidden Markov model indicates the presence of a chain of unobserved molecular states that each cell transits through stochastically in sequence. This chain of hidden states allows individual cells to record their position on the differentiation trajectory, thereby encoding a simple form of cellular memory. We suggest a statistical mechanics interpretation of these results that distinguishes between functionally distinct cellular “macrostates” and functionally similar molecular “microstates” and propose a model of stem cell differentiation as a non-Markov stochastic process. Cell Press 2017-09-27 /pmc/articles/PMC5624514/ /pubmed/28957659 http://dx.doi.org/10.1016/j.cels.2017.08.009 Text en © 2017 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Stumpf, Patrick S. Smith, Rosanna C.G. Lenz, Michael Schuppert, Andreas Müller, Franz-Josef Babtie, Ann Chan, Thalia E. Stumpf, Michael P.H. Please, Colin P. Howison, Sam D. Arai, Fumio MacArthur, Ben D. Stem Cell Differentiation as a Non-Markov Stochastic Process |
title | Stem Cell Differentiation as a Non-Markov Stochastic Process |
title_full | Stem Cell Differentiation as a Non-Markov Stochastic Process |
title_fullStr | Stem Cell Differentiation as a Non-Markov Stochastic Process |
title_full_unstemmed | Stem Cell Differentiation as a Non-Markov Stochastic Process |
title_short | Stem Cell Differentiation as a Non-Markov Stochastic Process |
title_sort | stem cell differentiation as a non-markov stochastic process |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5624514/ https://www.ncbi.nlm.nih.gov/pubmed/28957659 http://dx.doi.org/10.1016/j.cels.2017.08.009 |
work_keys_str_mv | AT stumpfpatricks stemcelldifferentiationasanonmarkovstochasticprocess AT smithrosannacg stemcelldifferentiationasanonmarkovstochasticprocess AT lenzmichael stemcelldifferentiationasanonmarkovstochasticprocess AT schuppertandreas stemcelldifferentiationasanonmarkovstochasticprocess AT mullerfranzjosef stemcelldifferentiationasanonmarkovstochasticprocess AT babtieann stemcelldifferentiationasanonmarkovstochasticprocess AT chanthaliae stemcelldifferentiationasanonmarkovstochasticprocess AT stumpfmichaelph stemcelldifferentiationasanonmarkovstochasticprocess AT pleasecolinp stemcelldifferentiationasanonmarkovstochasticprocess AT howisonsamd stemcelldifferentiationasanonmarkovstochasticprocess AT araifumio stemcelldifferentiationasanonmarkovstochasticprocess AT macarthurbend stemcelldifferentiationasanonmarkovstochasticprocess |