Cargando…

Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5

Following escape into the cytoplasm of host cells, Burkholderia pseudomallei and the related species Burkholderia thailandensis employ the type VI secretion system 5 (T6SS-5) to induce plasma membrane fusion with an adjacent host cell. This process leads to the formation of multinucleated giant cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Whiteley, Liam, Haug, Maria, Klein, Kristina, Willmann, Matthias, Bohn, Erwin, Chiantia, Salvatore, Schwarz, Sandra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626464/
https://www.ncbi.nlm.nih.gov/pubmed/28973030
http://dx.doi.org/10.1371/journal.pone.0185715
_version_ 1783268549628788736
author Whiteley, Liam
Haug, Maria
Klein, Kristina
Willmann, Matthias
Bohn, Erwin
Chiantia, Salvatore
Schwarz, Sandra
author_facet Whiteley, Liam
Haug, Maria
Klein, Kristina
Willmann, Matthias
Bohn, Erwin
Chiantia, Salvatore
Schwarz, Sandra
author_sort Whiteley, Liam
collection PubMed
description Following escape into the cytoplasm of host cells, Burkholderia pseudomallei and the related species Burkholderia thailandensis employ the type VI secretion system 5 (T6SS-5) to induce plasma membrane fusion with an adjacent host cell. This process leads to the formation of multinucleated giant cells and facilitates bacterial access to an uninfected host cell in a direct manner. Despite its importance in virulence, the mechanism of the T6SS-5 and the role of host cell factors in cell-cell fusion remain elusive. To date, the T6SS-5 is the only system of bacterial origin known to induce host-cell fusion. To gain insight into the nature of T6SS-5-stimulated membrane fusion, we investigated the contribution of cholesterol and proteins exposed on the host cell surface, which were shown to be critically involved in virus-mediated giant cell formation. In particular, we analyzed the effect of host cell surface protein and cholesterol depletion on the formation of multinucleated giant cells induced by B. thailandensis. Acute protease treatment of RAW264.7 macrophages during infection with B. thailandensis followed by agarose overlay assays revealed a strong reduction in the number of cell-cell fusions compared with EDTA treated cells. Similarly, proteolytic treatment of specifically infected donor cells or uninfected recipient cells significantly decreased multinucleated giant cell formation. Furthermore, modulating host cell cholesterol content by acute cholesterol depletion from cellular membranes by methyl- β-cyclodextrin treatment or exogenous addition of cholesterol impaired the ability of B. thailandensis to induce cell-cell fusions. The requirement of physiological cholesterol levels suggests that the membrane organization or mechanical properties of the lipid bilayer influence the fusion process. Altogether, our data suggest that membrane fusion induced by B. pseudomallei and B. thailandensis involves a complex interplay between the T6SS-5 and the host cell.
format Online
Article
Text
id pubmed-5626464
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-56264642017-10-17 Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5 Whiteley, Liam Haug, Maria Klein, Kristina Willmann, Matthias Bohn, Erwin Chiantia, Salvatore Schwarz, Sandra PLoS One Research Article Following escape into the cytoplasm of host cells, Burkholderia pseudomallei and the related species Burkholderia thailandensis employ the type VI secretion system 5 (T6SS-5) to induce plasma membrane fusion with an adjacent host cell. This process leads to the formation of multinucleated giant cells and facilitates bacterial access to an uninfected host cell in a direct manner. Despite its importance in virulence, the mechanism of the T6SS-5 and the role of host cell factors in cell-cell fusion remain elusive. To date, the T6SS-5 is the only system of bacterial origin known to induce host-cell fusion. To gain insight into the nature of T6SS-5-stimulated membrane fusion, we investigated the contribution of cholesterol and proteins exposed on the host cell surface, which were shown to be critically involved in virus-mediated giant cell formation. In particular, we analyzed the effect of host cell surface protein and cholesterol depletion on the formation of multinucleated giant cells induced by B. thailandensis. Acute protease treatment of RAW264.7 macrophages during infection with B. thailandensis followed by agarose overlay assays revealed a strong reduction in the number of cell-cell fusions compared with EDTA treated cells. Similarly, proteolytic treatment of specifically infected donor cells or uninfected recipient cells significantly decreased multinucleated giant cell formation. Furthermore, modulating host cell cholesterol content by acute cholesterol depletion from cellular membranes by methyl- β-cyclodextrin treatment or exogenous addition of cholesterol impaired the ability of B. thailandensis to induce cell-cell fusions. The requirement of physiological cholesterol levels suggests that the membrane organization or mechanical properties of the lipid bilayer influence the fusion process. Altogether, our data suggest that membrane fusion induced by B. pseudomallei and B. thailandensis involves a complex interplay between the T6SS-5 and the host cell. Public Library of Science 2017-10-03 /pmc/articles/PMC5626464/ /pubmed/28973030 http://dx.doi.org/10.1371/journal.pone.0185715 Text en © 2017 Whiteley et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Whiteley, Liam
Haug, Maria
Klein, Kristina
Willmann, Matthias
Bohn, Erwin
Chiantia, Salvatore
Schwarz, Sandra
Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5
title Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5
title_full Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5
title_fullStr Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5
title_full_unstemmed Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5
title_short Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5
title_sort cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the burkholderia type vi secretion system 5
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626464/
https://www.ncbi.nlm.nih.gov/pubmed/28973030
http://dx.doi.org/10.1371/journal.pone.0185715
work_keys_str_mv AT whiteleyliam cholesterolandhostcellsurfaceproteinscontributetocellcellfusioninducedbytheburkholderiatypevisecretionsystem5
AT haugmaria cholesterolandhostcellsurfaceproteinscontributetocellcellfusioninducedbytheburkholderiatypevisecretionsystem5
AT kleinkristina cholesterolandhostcellsurfaceproteinscontributetocellcellfusioninducedbytheburkholderiatypevisecretionsystem5
AT willmannmatthias cholesterolandhostcellsurfaceproteinscontributetocellcellfusioninducedbytheburkholderiatypevisecretionsystem5
AT bohnerwin cholesterolandhostcellsurfaceproteinscontributetocellcellfusioninducedbytheburkholderiatypevisecretionsystem5
AT chiantiasalvatore cholesterolandhostcellsurfaceproteinscontributetocellcellfusioninducedbytheburkholderiatypevisecretionsystem5
AT schwarzsandra cholesterolandhostcellsurfaceproteinscontributetocellcellfusioninducedbytheburkholderiatypevisecretionsystem5