Cargando…
Inflammasome Activation by Bacterial Outer Membrane Vesicles Requires Guanylate Binding Proteins
The Gram-negative bacterial cell wall component lipopolysaccharide (LPS) is recognized by the noncanonical inflammasome protein caspase-11 in the cytosol of infected host cells and thereby prompts an inflammatory immune response linked to sepsis. Host guanylate binding proteins (GBPs) promote infect...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626967/ https://www.ncbi.nlm.nih.gov/pubmed/28974614 http://dx.doi.org/10.1128/mBio.01188-17 |
Sumario: | The Gram-negative bacterial cell wall component lipopolysaccharide (LPS) is recognized by the noncanonical inflammasome protein caspase-11 in the cytosol of infected host cells and thereby prompts an inflammatory immune response linked to sepsis. Host guanylate binding proteins (GBPs) promote infection-induced caspase-11 activation in tissue culture models, and yet their in vivo role in LPS-mediated sepsis has remained unexplored. LPS can be released from lysed bacteria as “free” LPS aggregates or actively secreted by live bacteria as a component of outer membrane vesicles (OMVs). Here, we report that GBPs control inflammation and sepsis in mice injected with either free LPS or purified OMVs derived from Gram-negative Escherichia coli. In agreement with our observations from in vivo experiments, we demonstrate that macrophages lacking GBP2 expression fail to induce pyroptotic cell death and proinflammatory interleukin-1β (IL-1β) and IL-18 secretion when exposed to OMVs. We propose that in order to activate caspase-11 in vivo, GBPs control the processing of bacterium-derived OMVs by macrophages as well as the processing of circulating free LPS by as-yet-undetermined cell types. |
---|