Cargando…

Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1

PURPOSE: To determine the impact of the loss of syndecan 1 (SDC1) on intraepithelial corneal nerves (ICNs) during homeostasis, aging, and in response to 1.5-mm trephine and debridement injury. METHODS: Whole-mount corneas are used to quantify ICN density and thickness over time after birth and in re...

Descripción completa

Detalles Bibliográficos
Autores principales: Pal-Ghosh, Sonali, Tadvalkar, Gauri, Stepp, Mary Ann
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627677/
https://www.ncbi.nlm.nih.gov/pubmed/28973369
http://dx.doi.org/10.1167/iovs.17-21531
_version_ 1783268750011662336
author Pal-Ghosh, Sonali
Tadvalkar, Gauri
Stepp, Mary Ann
author_facet Pal-Ghosh, Sonali
Tadvalkar, Gauri
Stepp, Mary Ann
author_sort Pal-Ghosh, Sonali
collection PubMed
description PURPOSE: To determine the impact of the loss of syndecan 1 (SDC1) on intraepithelial corneal nerves (ICNs) during homeostasis, aging, and in response to 1.5-mm trephine and debridement injury. METHODS: Whole-mount corneas are used to quantify ICN density and thickness over time after birth and in response to injury in SDC1-null and wild-type (WT) mice. High-resolution three-dimensional imaging is used to visualize intraepithelial nerve terminals (INTs), axon fragments, and lysosomes in corneal epithelial cells using antibodies against growth associated protein 43 (GAP43), βIII tubulin, and LAMP1. Quantitative PCR was performed to quantify expression of SDC1, SDC2, SDC3, and SDC4 in corneal epithelial mRNA. Phagocytosis was assessed by quantifying internalization of fluorescently labeled 1-μm latex beads. RESULTS: Intraepithelial corneal nerves innervate the corneas of SDC1-null mice more slowly. At 8 weeks, ICN density is less but thickness is greater. Apically projecting intraepithelial nerve terminals and lysosome-associated membrane glycoprotein 1 (LAMP1) are also reduced in unwounded SDC1-null corneas. Quantitative PCR and immunofluorescence studies show that SDC3 expression and localization are increased in SDC1-null ICNs. Wild-type and SDC1-null corneas lose ICN density and thickness as they age. Recovery of axon density and thickness after trephine but not debridement wounds is slower in SDC1-null corneas compared with WT. Experiments assessing phagocytosis show reduced bead internalization by SDC1-null epithelial cells. CONCLUSIONS: Syndecan-1 deficiency alters ICN morphology and homeostasis during aging, reduces epithelial phagocytosis, and impairs reinnervation after trephine but not debridement injury. These data provide insight into the mechanisms used by sensory nerves to reinnervate after injury.
format Online
Article
Text
id pubmed-5627677
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher The Association for Research in Vision and Ophthalmology
record_format MEDLINE/PubMed
spelling pubmed-56276772017-10-05 Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1 Pal-Ghosh, Sonali Tadvalkar, Gauri Stepp, Mary Ann Invest Ophthalmol Vis Sci Cornea PURPOSE: To determine the impact of the loss of syndecan 1 (SDC1) on intraepithelial corneal nerves (ICNs) during homeostasis, aging, and in response to 1.5-mm trephine and debridement injury. METHODS: Whole-mount corneas are used to quantify ICN density and thickness over time after birth and in response to injury in SDC1-null and wild-type (WT) mice. High-resolution three-dimensional imaging is used to visualize intraepithelial nerve terminals (INTs), axon fragments, and lysosomes in corneal epithelial cells using antibodies against growth associated protein 43 (GAP43), βIII tubulin, and LAMP1. Quantitative PCR was performed to quantify expression of SDC1, SDC2, SDC3, and SDC4 in corneal epithelial mRNA. Phagocytosis was assessed by quantifying internalization of fluorescently labeled 1-μm latex beads. RESULTS: Intraepithelial corneal nerves innervate the corneas of SDC1-null mice more slowly. At 8 weeks, ICN density is less but thickness is greater. Apically projecting intraepithelial nerve terminals and lysosome-associated membrane glycoprotein 1 (LAMP1) are also reduced in unwounded SDC1-null corneas. Quantitative PCR and immunofluorescence studies show that SDC3 expression and localization are increased in SDC1-null ICNs. Wild-type and SDC1-null corneas lose ICN density and thickness as they age. Recovery of axon density and thickness after trephine but not debridement wounds is slower in SDC1-null corneas compared with WT. Experiments assessing phagocytosis show reduced bead internalization by SDC1-null epithelial cells. CONCLUSIONS: Syndecan-1 deficiency alters ICN morphology and homeostasis during aging, reduces epithelial phagocytosis, and impairs reinnervation after trephine but not debridement injury. These data provide insight into the mechanisms used by sensory nerves to reinnervate after injury. The Association for Research in Vision and Ophthalmology 2017-10 /pmc/articles/PMC5627677/ /pubmed/28973369 http://dx.doi.org/10.1167/iovs.17-21531 Text en Copyright 2017 The Authors http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License.
spellingShingle Cornea
Pal-Ghosh, Sonali
Tadvalkar, Gauri
Stepp, Mary Ann
Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1
title Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1
title_full Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1
title_fullStr Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1
title_full_unstemmed Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1
title_short Alterations in Corneal Sensory Nerves During Homeostasis, Aging, and After Injury in Mice Lacking the Heparan Sulfate Proteoglycan Syndecan-1
title_sort alterations in corneal sensory nerves during homeostasis, aging, and after injury in mice lacking the heparan sulfate proteoglycan syndecan-1
topic Cornea
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627677/
https://www.ncbi.nlm.nih.gov/pubmed/28973369
http://dx.doi.org/10.1167/iovs.17-21531
work_keys_str_mv AT palghoshsonali alterationsincornealsensorynervesduringhomeostasisagingandafterinjuryinmicelackingtheheparansulfateproteoglycansyndecan1
AT tadvalkargauri alterationsincornealsensorynervesduringhomeostasisagingandafterinjuryinmicelackingtheheparansulfateproteoglycansyndecan1
AT steppmaryann alterationsincornealsensorynervesduringhomeostasisagingandafterinjuryinmicelackingtheheparansulfateproteoglycansyndecan1