Cargando…
VB-MK-LMF: fusion of drugs, targets and interactions using variational Bayesian multiple kernel logistic matrix factorization
BACKGROUND: Computational fusion approaches to drug-target interaction (DTI) prediction, capable of utilizing multiple sources of background knowledge, were reported to achieve superior predictive performance in multiple studies. Other studies showed that specificities of the DTI task, such as weigh...
Autores principales: | Bolgár, Bence, Antal, Péter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5628496/ https://www.ncbi.nlm.nih.gov/pubmed/28978313 http://dx.doi.org/10.1186/s12859-017-1845-z |
Ejemplares similares
-
Predicting virus-host association by Kernelized logistic matrix factorization and similarity network fusion
por: Liu, Dan, et al.
Publicado: (2019) -
Comorbidities in the diseasome are more apparent than real: What Bayesian filtering reveals about the comorbidities of depression
por: Marx, Peter, et al.
Publicado: (2017) -
VariantMetaCaller: automated fusion of variant calling pipelines for quantitative, precision-based filtering
por: Gézsi, András, et al.
Publicado: (2015) -
Genetic and functional studies of the LMF1 gene in Thai patients with severe hypertriglyceridemia
por: Plengpanich, Wanee, et al.
Publicado: (2020) -
Real world XML Web services: for VB and VB.NET developers
por: Shohoud, Yasser
Publicado: (2003)