Cargando…
RNAi targeting Nogo Receptor enhanced survival and proliferation of murine retinal ganglion cells during N-methyl-D-aspartate-induced optic nerve crush
We investigated the effects of lentivirus-mediated RNAi targeting of Nogo Receptor (NgR) on the proliferation and survival of murine retinal ganglion cells (mRGCs) in vitro and in vivo. Cultured mRGCs and C57BL/6 male mice were divided into 4 experimental groups: blank, model [100 μM N-methyl-D-aspa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5630308/ https://www.ncbi.nlm.nih.gov/pubmed/29029408 http://dx.doi.org/10.18632/oncotarget.17351 |
Sumario: | We investigated the effects of lentivirus-mediated RNAi targeting of Nogo Receptor (NgR) on the proliferation and survival of murine retinal ganglion cells (mRGCs) in vitro and in vivo. Cultured mRGCs and C57BL/6 male mice were divided into 4 experimental groups: blank, model [100 μM N-methyl-D-aspartate (NMDA)], nscRNA (100 μM NMDA+ nscRNA vectors) and siNgR (100 μM NMDA+ siNgR vectors). CCK-8 and flow cytometry analyses revealed that silencing NgR enhanced proliferation, cell cycling and survival of NMDA-treated mRGCs. H&E staining showed that NgR silencing enhanced mRGC cell density and reduced angiogenesis in NMDA-treated retinal tissues. TUNEL assays showed that mRGC apoptosis was significantly diminished by NgR silencing in NMDA-treated retinal tissues. Western blotting and qRT-PCR analysis in NMDA-treated mRGCs and murine retinal tissues revealed that NgR silencing resulted in downregulation of RhoA signaling (RhoA and ROCK2). Western blotting showed that levels of activated Bax and cleaved caspase 3 were decreased, while Bcl-2 and pro-caspase 3 were increased in NMDA-treated mRGCs and murine retinal tissues, which corroborated the decreased apoptosis. These findings indicate that NgR gene silencing increases proliferation and survival of mRGCs in NMDA-treated murine retinas, which suggests a potential for therapeutic application to preventing optic nerve damage. |
---|