Cargando…
Toll-Like Receptor 8 Is a Major Sensor of Group B Streptococcus But Not Escherichia coli in Human Primary Monocytes and Macrophages
TLR8 is the major endosomal sensor of degraded RNA in human monocytes and macrophages. It has been implicated in the sensing of viruses and more recently also bacteria. We previously identified a TLR8-IFN regulatory factor 5 (IRF5) signaling pathway that mediates IFNβ and interleukin-12 (IL-12) indu...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632357/ https://www.ncbi.nlm.nih.gov/pubmed/29042860 http://dx.doi.org/10.3389/fimmu.2017.01243 |
_version_ | 1783269686989815808 |
---|---|
author | Ehrnström, Birgitta Beckwith, Kai Sandvold Yurchenko, Mariia Moen, Siv Helen Kojen, June Frengen Lentini, Germana Teti, Giuseppe Damås, Jan Kristian Espevik, Terje Stenvik, Jørgen |
author_facet | Ehrnström, Birgitta Beckwith, Kai Sandvold Yurchenko, Mariia Moen, Siv Helen Kojen, June Frengen Lentini, Germana Teti, Giuseppe Damås, Jan Kristian Espevik, Terje Stenvik, Jørgen |
author_sort | Ehrnström, Birgitta |
collection | PubMed |
description | TLR8 is the major endosomal sensor of degraded RNA in human monocytes and macrophages. It has been implicated in the sensing of viruses and more recently also bacteria. We previously identified a TLR8-IFN regulatory factor 5 (IRF5) signaling pathway that mediates IFNβ and interleukin-12 (IL-12) induction by Staphylococcus aureus and is antagonized by TLR2. The relative importance of TLR8 for the sensing of various bacterial species is however still unclear. We here compared the role of TLR8 and IRF5 for the sensing of Group B Streptococcus (GBS), S. aureus, and Escherichia coli in human primary monocytes and monocyte-derived macrophages (MDM). GBS induced stronger IFNβ and TNF production as well as IRF5 nuclear translocation compared to S. aureus grown to the stationary phase, while S. aureus in exponential growth appeared similarly potent to GBS. Cytokine induction in primary human monocytes by GBS was not dependent on hemolysins, and induction of IFNβ and IL-12 as well as IRF5 activation were reduced with TLR2 ligand costimulation. Heat inactivation of GBS reduced IRF5 and NF-kB translocation, while only the viable E. coli activated IRF5. The attenuated stimulation correlated with loss of bacterial RNA integrity. The E. coli-induced IRF5 translocation was not inhibited by TLR2 costimulation, suggesting that IRF5 was activated via a TLR8-independent mechanism. Gene silencing of MDM using siRNA revealed that GBS-induced IFNβ, IL-12-p35, and TNF production was dependent on TLR8 and IRF5. In contrast, cytokine induction by E. coli was TLR8 independent but still partly dependent on IRF5. We conclude that TLR8-IRF5 signaling is more important for the sensing of GBS than for stationary grown S. aureus in human primary monocytes and MDM, likely due to reduced resistance of GBS to phagosomal degradation and to a lower production of TLR2 activating lipoproteins. TLR8 does not sense viable E. coli, while IRF5 still contributes to E. coli-induced cytokine production, possibly via a cytosolic nucleic acid sensing mechanism. |
format | Online Article Text |
id | pubmed-5632357 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-56323572017-10-17 Toll-Like Receptor 8 Is a Major Sensor of Group B Streptococcus But Not Escherichia coli in Human Primary Monocytes and Macrophages Ehrnström, Birgitta Beckwith, Kai Sandvold Yurchenko, Mariia Moen, Siv Helen Kojen, June Frengen Lentini, Germana Teti, Giuseppe Damås, Jan Kristian Espevik, Terje Stenvik, Jørgen Front Immunol Immunology TLR8 is the major endosomal sensor of degraded RNA in human monocytes and macrophages. It has been implicated in the sensing of viruses and more recently also bacteria. We previously identified a TLR8-IFN regulatory factor 5 (IRF5) signaling pathway that mediates IFNβ and interleukin-12 (IL-12) induction by Staphylococcus aureus and is antagonized by TLR2. The relative importance of TLR8 for the sensing of various bacterial species is however still unclear. We here compared the role of TLR8 and IRF5 for the sensing of Group B Streptococcus (GBS), S. aureus, and Escherichia coli in human primary monocytes and monocyte-derived macrophages (MDM). GBS induced stronger IFNβ and TNF production as well as IRF5 nuclear translocation compared to S. aureus grown to the stationary phase, while S. aureus in exponential growth appeared similarly potent to GBS. Cytokine induction in primary human monocytes by GBS was not dependent on hemolysins, and induction of IFNβ and IL-12 as well as IRF5 activation were reduced with TLR2 ligand costimulation. Heat inactivation of GBS reduced IRF5 and NF-kB translocation, while only the viable E. coli activated IRF5. The attenuated stimulation correlated with loss of bacterial RNA integrity. The E. coli-induced IRF5 translocation was not inhibited by TLR2 costimulation, suggesting that IRF5 was activated via a TLR8-independent mechanism. Gene silencing of MDM using siRNA revealed that GBS-induced IFNβ, IL-12-p35, and TNF production was dependent on TLR8 and IRF5. In contrast, cytokine induction by E. coli was TLR8 independent but still partly dependent on IRF5. We conclude that TLR8-IRF5 signaling is more important for the sensing of GBS than for stationary grown S. aureus in human primary monocytes and MDM, likely due to reduced resistance of GBS to phagosomal degradation and to a lower production of TLR2 activating lipoproteins. TLR8 does not sense viable E. coli, while IRF5 still contributes to E. coli-induced cytokine production, possibly via a cytosolic nucleic acid sensing mechanism. Frontiers Media S.A. 2017-10-03 /pmc/articles/PMC5632357/ /pubmed/29042860 http://dx.doi.org/10.3389/fimmu.2017.01243 Text en Copyright © 2017 Ehrnström, Beckwith, Yurchenko, Moen, Kojen, Lentini, Teti, Damås, Espevik and Stenvik. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Ehrnström, Birgitta Beckwith, Kai Sandvold Yurchenko, Mariia Moen, Siv Helen Kojen, June Frengen Lentini, Germana Teti, Giuseppe Damås, Jan Kristian Espevik, Terje Stenvik, Jørgen Toll-Like Receptor 8 Is a Major Sensor of Group B Streptococcus But Not Escherichia coli in Human Primary Monocytes and Macrophages |
title | Toll-Like Receptor 8 Is a Major Sensor of Group B Streptococcus But Not Escherichia coli in Human Primary Monocytes and Macrophages |
title_full | Toll-Like Receptor 8 Is a Major Sensor of Group B Streptococcus But Not Escherichia coli in Human Primary Monocytes and Macrophages |
title_fullStr | Toll-Like Receptor 8 Is a Major Sensor of Group B Streptococcus But Not Escherichia coli in Human Primary Monocytes and Macrophages |
title_full_unstemmed | Toll-Like Receptor 8 Is a Major Sensor of Group B Streptococcus But Not Escherichia coli in Human Primary Monocytes and Macrophages |
title_short | Toll-Like Receptor 8 Is a Major Sensor of Group B Streptococcus But Not Escherichia coli in Human Primary Monocytes and Macrophages |
title_sort | toll-like receptor 8 is a major sensor of group b streptococcus but not escherichia coli in human primary monocytes and macrophages |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632357/ https://www.ncbi.nlm.nih.gov/pubmed/29042860 http://dx.doi.org/10.3389/fimmu.2017.01243 |
work_keys_str_mv | AT ehrnstrombirgitta tolllikereceptor8isamajorsensorofgroupbstreptococcusbutnotescherichiacoliinhumanprimarymonocytesandmacrophages AT beckwithkaisandvold tolllikereceptor8isamajorsensorofgroupbstreptococcusbutnotescherichiacoliinhumanprimarymonocytesandmacrophages AT yurchenkomariia tolllikereceptor8isamajorsensorofgroupbstreptococcusbutnotescherichiacoliinhumanprimarymonocytesandmacrophages AT moensivhelen tolllikereceptor8isamajorsensorofgroupbstreptococcusbutnotescherichiacoliinhumanprimarymonocytesandmacrophages AT kojenjunefrengen tolllikereceptor8isamajorsensorofgroupbstreptococcusbutnotescherichiacoliinhumanprimarymonocytesandmacrophages AT lentinigermana tolllikereceptor8isamajorsensorofgroupbstreptococcusbutnotescherichiacoliinhumanprimarymonocytesandmacrophages AT tetigiuseppe tolllikereceptor8isamajorsensorofgroupbstreptococcusbutnotescherichiacoliinhumanprimarymonocytesandmacrophages AT damasjankristian tolllikereceptor8isamajorsensorofgroupbstreptococcusbutnotescherichiacoliinhumanprimarymonocytesandmacrophages AT espevikterje tolllikereceptor8isamajorsensorofgroupbstreptococcusbutnotescherichiacoliinhumanprimarymonocytesandmacrophages AT stenvikjørgen tolllikereceptor8isamajorsensorofgroupbstreptococcusbutnotescherichiacoliinhumanprimarymonocytesandmacrophages |