Cargando…
Improving Visualization and Interpretation of Metabolome-Wide Association Studies: An Application in a Population-Based Cohort Using Untargeted (1)H NMR Metabolic Profiling
[Image: see text] (1)H NMR spectroscopy of biofluids generates reproducible data allowing detection and quantification of small molecules in large population cohorts. Statistical models to analyze such data are now well-established, and the use of univariate metabolome wide association studies (MWAS...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633829/ https://www.ncbi.nlm.nih.gov/pubmed/28823158 http://dx.doi.org/10.1021/acs.jproteome.7b00344 |
_version_ | 1783269962124623872 |
---|---|
author | Castagné, Raphaële Boulangé, Claire Laurence Karaman, Ibrahim Campanella, Gianluca Santos Ferreira, Diana L. Kaluarachchi, Manuja R. Lehne, Benjamin Moayyeri, Alireza Lewis, Matthew R. Spagou, Konstantina Dona, Anthony C. Evangelos, Vangelis Tracy, Russell Greenland, Philip Lindon, John C. Herrington, David Ebbels, Timothy M. D. Elliott, Paul Tzoulaki, Ioanna Chadeau-Hyam, Marc |
author_facet | Castagné, Raphaële Boulangé, Claire Laurence Karaman, Ibrahim Campanella, Gianluca Santos Ferreira, Diana L. Kaluarachchi, Manuja R. Lehne, Benjamin Moayyeri, Alireza Lewis, Matthew R. Spagou, Konstantina Dona, Anthony C. Evangelos, Vangelis Tracy, Russell Greenland, Philip Lindon, John C. Herrington, David Ebbels, Timothy M. D. Elliott, Paul Tzoulaki, Ioanna Chadeau-Hyam, Marc |
author_sort | Castagné, Raphaële |
collection | PubMed |
description | [Image: see text] (1)H NMR spectroscopy of biofluids generates reproducible data allowing detection and quantification of small molecules in large population cohorts. Statistical models to analyze such data are now well-established, and the use of univariate metabolome wide association studies (MWAS) investigating the spectral features separately has emerged as a computationally efficient and interpretable alternative to multivariate models. The MWAS rely on the accurate estimation of a metabolome wide significance level (MWSL) to be applied to control the family wise error rate. Subsequent interpretation requires efficient visualization and formal feature annotation, which, in-turn, call for efficient prioritization of spectral variables of interest. Using human serum (1)H NMR spectroscopic profiles from 3948 participants from the Multi-Ethnic Study of Atherosclerosis (MESA), we have performed a series of MWAS for serum levels of glucose. We first propose an extension of the conventional MWSL that yields stable estimates of the MWSL across the different model parameterizations and distributional features of the outcome. We propose both efficient visualization methods and a strategy based on subsampling and internal validation to prioritize the associations. Our work proposes and illustrates practical and scalable solutions to facilitate the implementation of the MWAS approach and improve interpretation in large cohort studies. |
format | Online Article Text |
id | pubmed-5633829 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-56338292017-10-11 Improving Visualization and Interpretation of Metabolome-Wide Association Studies: An Application in a Population-Based Cohort Using Untargeted (1)H NMR Metabolic Profiling Castagné, Raphaële Boulangé, Claire Laurence Karaman, Ibrahim Campanella, Gianluca Santos Ferreira, Diana L. Kaluarachchi, Manuja R. Lehne, Benjamin Moayyeri, Alireza Lewis, Matthew R. Spagou, Konstantina Dona, Anthony C. Evangelos, Vangelis Tracy, Russell Greenland, Philip Lindon, John C. Herrington, David Ebbels, Timothy M. D. Elliott, Paul Tzoulaki, Ioanna Chadeau-Hyam, Marc J Proteome Res [Image: see text] (1)H NMR spectroscopy of biofluids generates reproducible data allowing detection and quantification of small molecules in large population cohorts. Statistical models to analyze such data are now well-established, and the use of univariate metabolome wide association studies (MWAS) investigating the spectral features separately has emerged as a computationally efficient and interpretable alternative to multivariate models. The MWAS rely on the accurate estimation of a metabolome wide significance level (MWSL) to be applied to control the family wise error rate. Subsequent interpretation requires efficient visualization and formal feature annotation, which, in-turn, call for efficient prioritization of spectral variables of interest. Using human serum (1)H NMR spectroscopic profiles from 3948 participants from the Multi-Ethnic Study of Atherosclerosis (MESA), we have performed a series of MWAS for serum levels of glucose. We first propose an extension of the conventional MWSL that yields stable estimates of the MWSL across the different model parameterizations and distributional features of the outcome. We propose both efficient visualization methods and a strategy based on subsampling and internal validation to prioritize the associations. Our work proposes and illustrates practical and scalable solutions to facilitate the implementation of the MWAS approach and improve interpretation in large cohort studies. American Chemical Society 2017-08-20 2017-10-06 /pmc/articles/PMC5633829/ /pubmed/28823158 http://dx.doi.org/10.1021/acs.jproteome.7b00344 Text en Copyright © 2017 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Castagné, Raphaële Boulangé, Claire Laurence Karaman, Ibrahim Campanella, Gianluca Santos Ferreira, Diana L. Kaluarachchi, Manuja R. Lehne, Benjamin Moayyeri, Alireza Lewis, Matthew R. Spagou, Konstantina Dona, Anthony C. Evangelos, Vangelis Tracy, Russell Greenland, Philip Lindon, John C. Herrington, David Ebbels, Timothy M. D. Elliott, Paul Tzoulaki, Ioanna Chadeau-Hyam, Marc Improving Visualization and Interpretation of Metabolome-Wide Association Studies: An Application in a Population-Based Cohort Using Untargeted (1)H NMR Metabolic Profiling |
title | Improving Visualization
and Interpretation of Metabolome-Wide
Association Studies: An Application in a Population-Based Cohort Using
Untargeted (1)H NMR Metabolic Profiling |
title_full | Improving Visualization
and Interpretation of Metabolome-Wide
Association Studies: An Application in a Population-Based Cohort Using
Untargeted (1)H NMR Metabolic Profiling |
title_fullStr | Improving Visualization
and Interpretation of Metabolome-Wide
Association Studies: An Application in a Population-Based Cohort Using
Untargeted (1)H NMR Metabolic Profiling |
title_full_unstemmed | Improving Visualization
and Interpretation of Metabolome-Wide
Association Studies: An Application in a Population-Based Cohort Using
Untargeted (1)H NMR Metabolic Profiling |
title_short | Improving Visualization
and Interpretation of Metabolome-Wide
Association Studies: An Application in a Population-Based Cohort Using
Untargeted (1)H NMR Metabolic Profiling |
title_sort | improving visualization
and interpretation of metabolome-wide
association studies: an application in a population-based cohort using
untargeted (1)h nmr metabolic profiling |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633829/ https://www.ncbi.nlm.nih.gov/pubmed/28823158 http://dx.doi.org/10.1021/acs.jproteome.7b00344 |
work_keys_str_mv | AT castagneraphaele improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT boulangeclairelaurence improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT karamanibrahim improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT campanellagianluca improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT santosferreiradianal improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT kaluarachchimanujar improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT lehnebenjamin improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT moayyerialireza improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT lewismatthewr improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT spagoukonstantina improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT donaanthonyc improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT evangelosvangelis improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT tracyrussell improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT greenlandphilip improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT lindonjohnc improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT herringtondavid improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT ebbelstimothymd improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT elliottpaul improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT tzoulakiioanna improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling AT chadeauhyammarc improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling |