Cargando…

Improving Visualization and Interpretation of Metabolome-Wide Association Studies: An Application in a Population-Based Cohort Using Untargeted (1)H NMR Metabolic Profiling

[Image: see text] (1)H NMR spectroscopy of biofluids generates reproducible data allowing detection and quantification of small molecules in large population cohorts. Statistical models to analyze such data are now well-established, and the use of univariate metabolome wide association studies (MWAS...

Descripción completa

Detalles Bibliográficos
Autores principales: Castagné, Raphaële, Boulangé, Claire Laurence, Karaman, Ibrahim, Campanella, Gianluca, Santos Ferreira, Diana L., Kaluarachchi, Manuja R., Lehne, Benjamin, Moayyeri, Alireza, Lewis, Matthew R., Spagou, Konstantina, Dona, Anthony C., Evangelos, Vangelis, Tracy, Russell, Greenland, Philip, Lindon, John C., Herrington, David, Ebbels, Timothy M. D., Elliott, Paul, Tzoulaki, Ioanna, Chadeau-Hyam, Marc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633829/
https://www.ncbi.nlm.nih.gov/pubmed/28823158
http://dx.doi.org/10.1021/acs.jproteome.7b00344
_version_ 1783269962124623872
author Castagné, Raphaële
Boulangé, Claire Laurence
Karaman, Ibrahim
Campanella, Gianluca
Santos Ferreira, Diana L.
Kaluarachchi, Manuja R.
Lehne, Benjamin
Moayyeri, Alireza
Lewis, Matthew R.
Spagou, Konstantina
Dona, Anthony C.
Evangelos, Vangelis
Tracy, Russell
Greenland, Philip
Lindon, John C.
Herrington, David
Ebbels, Timothy M. D.
Elliott, Paul
Tzoulaki, Ioanna
Chadeau-Hyam, Marc
author_facet Castagné, Raphaële
Boulangé, Claire Laurence
Karaman, Ibrahim
Campanella, Gianluca
Santos Ferreira, Diana L.
Kaluarachchi, Manuja R.
Lehne, Benjamin
Moayyeri, Alireza
Lewis, Matthew R.
Spagou, Konstantina
Dona, Anthony C.
Evangelos, Vangelis
Tracy, Russell
Greenland, Philip
Lindon, John C.
Herrington, David
Ebbels, Timothy M. D.
Elliott, Paul
Tzoulaki, Ioanna
Chadeau-Hyam, Marc
author_sort Castagné, Raphaële
collection PubMed
description [Image: see text] (1)H NMR spectroscopy of biofluids generates reproducible data allowing detection and quantification of small molecules in large population cohorts. Statistical models to analyze such data are now well-established, and the use of univariate metabolome wide association studies (MWAS) investigating the spectral features separately has emerged as a computationally efficient and interpretable alternative to multivariate models. The MWAS rely on the accurate estimation of a metabolome wide significance level (MWSL) to be applied to control the family wise error rate. Subsequent interpretation requires efficient visualization and formal feature annotation, which, in-turn, call for efficient prioritization of spectral variables of interest. Using human serum (1)H NMR spectroscopic profiles from 3948 participants from the Multi-Ethnic Study of Atherosclerosis (MESA), we have performed a series of MWAS for serum levels of glucose. We first propose an extension of the conventional MWSL that yields stable estimates of the MWSL across the different model parameterizations and distributional features of the outcome. We propose both efficient visualization methods and a strategy based on subsampling and internal validation to prioritize the associations. Our work proposes and illustrates practical and scalable solutions to facilitate the implementation of the MWAS approach and improve interpretation in large cohort studies.
format Online
Article
Text
id pubmed-5633829
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-56338292017-10-11 Improving Visualization and Interpretation of Metabolome-Wide Association Studies: An Application in a Population-Based Cohort Using Untargeted (1)H NMR Metabolic Profiling Castagné, Raphaële Boulangé, Claire Laurence Karaman, Ibrahim Campanella, Gianluca Santos Ferreira, Diana L. Kaluarachchi, Manuja R. Lehne, Benjamin Moayyeri, Alireza Lewis, Matthew R. Spagou, Konstantina Dona, Anthony C. Evangelos, Vangelis Tracy, Russell Greenland, Philip Lindon, John C. Herrington, David Ebbels, Timothy M. D. Elliott, Paul Tzoulaki, Ioanna Chadeau-Hyam, Marc J Proteome Res [Image: see text] (1)H NMR spectroscopy of biofluids generates reproducible data allowing detection and quantification of small molecules in large population cohorts. Statistical models to analyze such data are now well-established, and the use of univariate metabolome wide association studies (MWAS) investigating the spectral features separately has emerged as a computationally efficient and interpretable alternative to multivariate models. The MWAS rely on the accurate estimation of a metabolome wide significance level (MWSL) to be applied to control the family wise error rate. Subsequent interpretation requires efficient visualization and formal feature annotation, which, in-turn, call for efficient prioritization of spectral variables of interest. Using human serum (1)H NMR spectroscopic profiles from 3948 participants from the Multi-Ethnic Study of Atherosclerosis (MESA), we have performed a series of MWAS for serum levels of glucose. We first propose an extension of the conventional MWSL that yields stable estimates of the MWSL across the different model parameterizations and distributional features of the outcome. We propose both efficient visualization methods and a strategy based on subsampling and internal validation to prioritize the associations. Our work proposes and illustrates practical and scalable solutions to facilitate the implementation of the MWAS approach and improve interpretation in large cohort studies. American Chemical Society 2017-08-20 2017-10-06 /pmc/articles/PMC5633829/ /pubmed/28823158 http://dx.doi.org/10.1021/acs.jproteome.7b00344 Text en Copyright © 2017 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Castagné, Raphaële
Boulangé, Claire Laurence
Karaman, Ibrahim
Campanella, Gianluca
Santos Ferreira, Diana L.
Kaluarachchi, Manuja R.
Lehne, Benjamin
Moayyeri, Alireza
Lewis, Matthew R.
Spagou, Konstantina
Dona, Anthony C.
Evangelos, Vangelis
Tracy, Russell
Greenland, Philip
Lindon, John C.
Herrington, David
Ebbels, Timothy M. D.
Elliott, Paul
Tzoulaki, Ioanna
Chadeau-Hyam, Marc
Improving Visualization and Interpretation of Metabolome-Wide Association Studies: An Application in a Population-Based Cohort Using Untargeted (1)H NMR Metabolic Profiling
title Improving Visualization and Interpretation of Metabolome-Wide Association Studies: An Application in a Population-Based Cohort Using Untargeted (1)H NMR Metabolic Profiling
title_full Improving Visualization and Interpretation of Metabolome-Wide Association Studies: An Application in a Population-Based Cohort Using Untargeted (1)H NMR Metabolic Profiling
title_fullStr Improving Visualization and Interpretation of Metabolome-Wide Association Studies: An Application in a Population-Based Cohort Using Untargeted (1)H NMR Metabolic Profiling
title_full_unstemmed Improving Visualization and Interpretation of Metabolome-Wide Association Studies: An Application in a Population-Based Cohort Using Untargeted (1)H NMR Metabolic Profiling
title_short Improving Visualization and Interpretation of Metabolome-Wide Association Studies: An Application in a Population-Based Cohort Using Untargeted (1)H NMR Metabolic Profiling
title_sort improving visualization and interpretation of metabolome-wide association studies: an application in a population-based cohort using untargeted (1)h nmr metabolic profiling
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633829/
https://www.ncbi.nlm.nih.gov/pubmed/28823158
http://dx.doi.org/10.1021/acs.jproteome.7b00344
work_keys_str_mv AT castagneraphaele improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT boulangeclairelaurence improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT karamanibrahim improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT campanellagianluca improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT santosferreiradianal improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT kaluarachchimanujar improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT lehnebenjamin improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT moayyerialireza improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT lewismatthewr improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT spagoukonstantina improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT donaanthonyc improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT evangelosvangelis improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT tracyrussell improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT greenlandphilip improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT lindonjohnc improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT herringtondavid improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT ebbelstimothymd improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT elliottpaul improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT tzoulakiioanna improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling
AT chadeauhyammarc improvingvisualizationandinterpretationofmetabolomewideassociationstudiesanapplicationinapopulationbasedcohortusinguntargeted1hnmrmetabolicprofiling