Cargando…
Introducing site-specific cysteines into nanobodies for mercury labelling allows de novo phasing of their crystal structures
The generation of high-quality protein crystals and the loss of phase information during an X-ray crystallography diffraction experiment represent the major bottlenecks in the determination of novel protein structures. A generic method for introducing Hg atoms into any crystal independent of the pre...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633906/ https://www.ncbi.nlm.nih.gov/pubmed/28994409 http://dx.doi.org/10.1107/S2059798317013171 |
_version_ | 1783269979231092736 |
---|---|
author | Hansen, Simon Boje Laursen, Nick Stub Andersen, Gregers Rom Andersen, Kasper R. |
author_facet | Hansen, Simon Boje Laursen, Nick Stub Andersen, Gregers Rom Andersen, Kasper R. |
author_sort | Hansen, Simon Boje |
collection | PubMed |
description | The generation of high-quality protein crystals and the loss of phase information during an X-ray crystallography diffraction experiment represent the major bottlenecks in the determination of novel protein structures. A generic method for introducing Hg atoms into any crystal independent of the presence of free cysteines in the target protein could considerably facilitate the process of obtaining unbiased experimental phases. Nanobodies (single-domain antibodies) have recently been shown to promote the crystallization and structure determination of flexible proteins and complexes. To extend the usability of nanobodies for crystallographic work, variants of the Nb36 nanobody with a single free cysteine at one of four framework-residue positions were developed. These cysteines could be labelled with fluorophores or Hg. For one cysteine variant (Nb36-C85) two nanobody structures were experimentally phased using single-wavelength anomalous dispersion (SAD) and single isomorphous replacement with anomalous signal (SIRAS), taking advantage of radiation-induced changes in Cys–Hg bonding. Importantly, Hg labelling influenced neither the interaction of Nb36 with its antigen complement C5 nor its structure. The results suggest that Cys–Hg-labelled nanobodies may become efficient tools for obtaining de novo phase information during the structure determination of nanobody–protein complexes. |
format | Online Article Text |
id | pubmed-5633906 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-56339062017-10-11 Introducing site-specific cysteines into nanobodies for mercury labelling allows de novo phasing of their crystal structures Hansen, Simon Boje Laursen, Nick Stub Andersen, Gregers Rom Andersen, Kasper R. Acta Crystallogr D Struct Biol Research Papers The generation of high-quality protein crystals and the loss of phase information during an X-ray crystallography diffraction experiment represent the major bottlenecks in the determination of novel protein structures. A generic method for introducing Hg atoms into any crystal independent of the presence of free cysteines in the target protein could considerably facilitate the process of obtaining unbiased experimental phases. Nanobodies (single-domain antibodies) have recently been shown to promote the crystallization and structure determination of flexible proteins and complexes. To extend the usability of nanobodies for crystallographic work, variants of the Nb36 nanobody with a single free cysteine at one of four framework-residue positions were developed. These cysteines could be labelled with fluorophores or Hg. For one cysteine variant (Nb36-C85) two nanobody structures were experimentally phased using single-wavelength anomalous dispersion (SAD) and single isomorphous replacement with anomalous signal (SIRAS), taking advantage of radiation-induced changes in Cys–Hg bonding. Importantly, Hg labelling influenced neither the interaction of Nb36 with its antigen complement C5 nor its structure. The results suggest that Cys–Hg-labelled nanobodies may become efficient tools for obtaining de novo phase information during the structure determination of nanobody–protein complexes. International Union of Crystallography 2017-09-27 /pmc/articles/PMC5633906/ /pubmed/28994409 http://dx.doi.org/10.1107/S2059798317013171 Text en © Hansen et al. 2017 http://creativecommons.org/licenses/by/2.0/uk/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/2.0/uk/ |
spellingShingle | Research Papers Hansen, Simon Boje Laursen, Nick Stub Andersen, Gregers Rom Andersen, Kasper R. Introducing site-specific cysteines into nanobodies for mercury labelling allows de novo phasing of their crystal structures |
title | Introducing site-specific cysteines into nanobodies for mercury labelling allows de novo phasing of their crystal structures |
title_full | Introducing site-specific cysteines into nanobodies for mercury labelling allows de novo phasing of their crystal structures |
title_fullStr | Introducing site-specific cysteines into nanobodies for mercury labelling allows de novo phasing of their crystal structures |
title_full_unstemmed | Introducing site-specific cysteines into nanobodies for mercury labelling allows de novo phasing of their crystal structures |
title_short | Introducing site-specific cysteines into nanobodies for mercury labelling allows de novo phasing of their crystal structures |
title_sort | introducing site-specific cysteines into nanobodies for mercury labelling allows de novo phasing of their crystal structures |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633906/ https://www.ncbi.nlm.nih.gov/pubmed/28994409 http://dx.doi.org/10.1107/S2059798317013171 |
work_keys_str_mv | AT hansensimonboje introducingsitespecificcysteinesintonanobodiesformercurylabellingallowsdenovophasingoftheircrystalstructures AT laursennickstub introducingsitespecificcysteinesintonanobodiesformercurylabellingallowsdenovophasingoftheircrystalstructures AT andersengregersrom introducingsitespecificcysteinesintonanobodiesformercurylabellingallowsdenovophasingoftheircrystalstructures AT andersenkasperr introducingsitespecificcysteinesintonanobodiesformercurylabellingallowsdenovophasingoftheircrystalstructures |