Cargando…
Reconstructing cancer drug response networks using multitask learning
BACKGROUND: Translating in vitro results to clinical tests is a major challenge in systems biology. Here we present a new Multi-Task learning framework which integrates thousands of cell line expression experiments to reconstruct drug specific response networks in cancer. RESULTS: The reconstructed...
Autores principales: | Ruffalo, Matthew, Stojanov, Petar, Pillutla, Venkata Krishna, Varma, Rohan, Bar-Joseph, Ziv |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635550/ https://www.ncbi.nlm.nih.gov/pubmed/29017547 http://dx.doi.org/10.1186/s12918-017-0471-8 |
Ejemplares similares
-
Using single cell atlas data to reconstruct regulatory networks
por: Song, Qi, et al.
Publicado: (2023) -
Multitask Learning of Signaling and Regulatory Networks with Application to Studying Human Response to Flu
por: Jain, Siddhartha, et al.
Publicado: (2014) -
Protein interaction disruption in cancer
por: Ruffalo, Matthew, et al.
Publicado: (2019) -
Network-guided prediction of aromatase inhibitor response in breast cancer
por: Ruffalo, Matthew, et al.
Publicado: (2019) -
A web server for comparative analysis of single-cell RNA-seq data
por: Alavi, Amir, et al.
Publicado: (2018)