Cargando…
The chemical states and atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) via laser annealing
Further scale down the dimension of silicon-based integrated circuit is a crucial trend in semiconductor fabrication. One of the most critical issues in the nano-device fabrication is to confirm the atomic structure evolution of the ultrathin shallow junction. In this report, UV Raman spectroscopy,...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5638925/ https://www.ncbi.nlm.nih.gov/pubmed/29026174 http://dx.doi.org/10.1038/s41598-017-13415-y |
_version_ | 1783270801320968192 |
---|---|
author | Lee, Fu-Ying Wu, Zong-Zhe Kao, Li-Chi Chang, Feng-Mei Chen, Sheng-Wen JangJian, Shiu-Ko Cheng, Hui-Yu Chen, Wei-Liang Chang, Yu-Ming Lo, Kuang Yao |
author_facet | Lee, Fu-Ying Wu, Zong-Zhe Kao, Li-Chi Chang, Feng-Mei Chen, Sheng-Wen JangJian, Shiu-Ko Cheng, Hui-Yu Chen, Wei-Liang Chang, Yu-Ming Lo, Kuang Yao |
author_sort | Lee, Fu-Ying |
collection | PubMed |
description | Further scale down the dimension of silicon-based integrated circuit is a crucial trend in semiconductor fabrication. One of the most critical issues in the nano-device fabrication is to confirm the atomic structure evolution of the ultrathin shallow junction. In this report, UV Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and reflective second harmonic generation (RSHG) are utilized to monitor the pulse laser induced atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) at room and cold substrate temperature. A peak feature around 480 cm(−1) resolved in UV Raman spectra indicates the formation of Si-B bond after the laser irradiation. The red shift of binding energy of Si element (~99 eV) in XPS and the evolution of absorption peak (~196.2 eV) in XANES reveal that the changes in the chemical states of ultra shallow junction strongly correlate to the activation process of Boron implantation, which is confirmed by RSHG measurement. The substrate temperature effect in the recrystallization of Boron implanted region is also realized by cross-section high-resolution TEM (HRTEM). The phenomena of Si-B bond formation and ultra-shallow junction recrystallization can be traced and applied to improve the reliability of Si ultra shallow junction in the future. |
format | Online Article Text |
id | pubmed-5638925 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-56389252017-10-18 The chemical states and atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) via laser annealing Lee, Fu-Ying Wu, Zong-Zhe Kao, Li-Chi Chang, Feng-Mei Chen, Sheng-Wen JangJian, Shiu-Ko Cheng, Hui-Yu Chen, Wei-Liang Chang, Yu-Ming Lo, Kuang Yao Sci Rep Article Further scale down the dimension of silicon-based integrated circuit is a crucial trend in semiconductor fabrication. One of the most critical issues in the nano-device fabrication is to confirm the atomic structure evolution of the ultrathin shallow junction. In this report, UV Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and reflective second harmonic generation (RSHG) are utilized to monitor the pulse laser induced atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) at room and cold substrate temperature. A peak feature around 480 cm(−1) resolved in UV Raman spectra indicates the formation of Si-B bond after the laser irradiation. The red shift of binding energy of Si element (~99 eV) in XPS and the evolution of absorption peak (~196.2 eV) in XANES reveal that the changes in the chemical states of ultra shallow junction strongly correlate to the activation process of Boron implantation, which is confirmed by RSHG measurement. The substrate temperature effect in the recrystallization of Boron implanted region is also realized by cross-section high-resolution TEM (HRTEM). The phenomena of Si-B bond formation and ultra-shallow junction recrystallization can be traced and applied to improve the reliability of Si ultra shallow junction in the future. Nature Publishing Group UK 2017-10-12 /pmc/articles/PMC5638925/ /pubmed/29026174 http://dx.doi.org/10.1038/s41598-017-13415-y Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Lee, Fu-Ying Wu, Zong-Zhe Kao, Li-Chi Chang, Feng-Mei Chen, Sheng-Wen JangJian, Shiu-Ko Cheng, Hui-Yu Chen, Wei-Liang Chang, Yu-Ming Lo, Kuang Yao The chemical states and atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) via laser annealing |
title | The chemical states and atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) via laser annealing |
title_full | The chemical states and atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) via laser annealing |
title_fullStr | The chemical states and atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) via laser annealing |
title_full_unstemmed | The chemical states and atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) via laser annealing |
title_short | The chemical states and atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) via laser annealing |
title_sort | chemical states and atomic structure evolution of ultralow-energy high-dose boron implanted si(110) via laser annealing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5638925/ https://www.ncbi.nlm.nih.gov/pubmed/29026174 http://dx.doi.org/10.1038/s41598-017-13415-y |
work_keys_str_mv | AT leefuying thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT wuzongzhe thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT kaolichi thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT changfengmei thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT chenshengwen thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT jangjianshiuko thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT chenghuiyu thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT chenweiliang thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT changyuming thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT lokuangyao thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT leefuying chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT wuzongzhe chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT kaolichi chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT changfengmei chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT chenshengwen chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT jangjianshiuko chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT chenghuiyu chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT chenweiliang chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT changyuming chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing AT lokuangyao chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing |