Cargando…

The chemical states and atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) via laser annealing

Further scale down the dimension of silicon-based integrated circuit is a crucial trend in semiconductor fabrication. One of the most critical issues in the nano-device fabrication is to confirm the atomic structure evolution of the ultrathin shallow junction. In this report, UV Raman spectroscopy,...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Fu-Ying, Wu, Zong-Zhe, Kao, Li-Chi, Chang, Feng-Mei, Chen, Sheng-Wen, JangJian, Shiu-Ko, Cheng, Hui-Yu, Chen, Wei-Liang, Chang, Yu-Ming, Lo, Kuang Yao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5638925/
https://www.ncbi.nlm.nih.gov/pubmed/29026174
http://dx.doi.org/10.1038/s41598-017-13415-y
_version_ 1783270801320968192
author Lee, Fu-Ying
Wu, Zong-Zhe
Kao, Li-Chi
Chang, Feng-Mei
Chen, Sheng-Wen
JangJian, Shiu-Ko
Cheng, Hui-Yu
Chen, Wei-Liang
Chang, Yu-Ming
Lo, Kuang Yao
author_facet Lee, Fu-Ying
Wu, Zong-Zhe
Kao, Li-Chi
Chang, Feng-Mei
Chen, Sheng-Wen
JangJian, Shiu-Ko
Cheng, Hui-Yu
Chen, Wei-Liang
Chang, Yu-Ming
Lo, Kuang Yao
author_sort Lee, Fu-Ying
collection PubMed
description Further scale down the dimension of silicon-based integrated circuit is a crucial trend in semiconductor fabrication. One of the most critical issues in the nano-device fabrication is to confirm the atomic structure evolution of the ultrathin shallow junction. In this report, UV Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and reflective second harmonic generation (RSHG) are utilized to monitor the pulse laser induced atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) at room and cold substrate temperature. A peak feature around 480 cm(−1) resolved in UV Raman spectra indicates the formation of Si-B bond after the laser irradiation. The red shift of binding energy of Si element (~99 eV) in XPS and the evolution of absorption peak (~196.2 eV) in XANES reveal that the changes in the chemical states of ultra shallow junction strongly correlate to the activation process of Boron implantation, which is confirmed by RSHG measurement. The substrate temperature effect in the recrystallization of Boron implanted region is also realized by cross-section high-resolution TEM (HRTEM). The phenomena of Si-B bond formation and ultra-shallow junction recrystallization can be traced and applied to improve the reliability of Si ultra shallow junction in the future.
format Online
Article
Text
id pubmed-5638925
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-56389252017-10-18 The chemical states and atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) via laser annealing Lee, Fu-Ying Wu, Zong-Zhe Kao, Li-Chi Chang, Feng-Mei Chen, Sheng-Wen JangJian, Shiu-Ko Cheng, Hui-Yu Chen, Wei-Liang Chang, Yu-Ming Lo, Kuang Yao Sci Rep Article Further scale down the dimension of silicon-based integrated circuit is a crucial trend in semiconductor fabrication. One of the most critical issues in the nano-device fabrication is to confirm the atomic structure evolution of the ultrathin shallow junction. In this report, UV Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and reflective second harmonic generation (RSHG) are utilized to monitor the pulse laser induced atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) at room and cold substrate temperature. A peak feature around 480 cm(−1) resolved in UV Raman spectra indicates the formation of Si-B bond after the laser irradiation. The red shift of binding energy of Si element (~99 eV) in XPS and the evolution of absorption peak (~196.2 eV) in XANES reveal that the changes in the chemical states of ultra shallow junction strongly correlate to the activation process of Boron implantation, which is confirmed by RSHG measurement. The substrate temperature effect in the recrystallization of Boron implanted region is also realized by cross-section high-resolution TEM (HRTEM). The phenomena of Si-B bond formation and ultra-shallow junction recrystallization can be traced and applied to improve the reliability of Si ultra shallow junction in the future. Nature Publishing Group UK 2017-10-12 /pmc/articles/PMC5638925/ /pubmed/29026174 http://dx.doi.org/10.1038/s41598-017-13415-y Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Lee, Fu-Ying
Wu, Zong-Zhe
Kao, Li-Chi
Chang, Feng-Mei
Chen, Sheng-Wen
JangJian, Shiu-Ko
Cheng, Hui-Yu
Chen, Wei-Liang
Chang, Yu-Ming
Lo, Kuang Yao
The chemical states and atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) via laser annealing
title The chemical states and atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) via laser annealing
title_full The chemical states and atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) via laser annealing
title_fullStr The chemical states and atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) via laser annealing
title_full_unstemmed The chemical states and atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) via laser annealing
title_short The chemical states and atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) via laser annealing
title_sort chemical states and atomic structure evolution of ultralow-energy high-dose boron implanted si(110) via laser annealing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5638925/
https://www.ncbi.nlm.nih.gov/pubmed/29026174
http://dx.doi.org/10.1038/s41598-017-13415-y
work_keys_str_mv AT leefuying thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT wuzongzhe thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT kaolichi thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT changfengmei thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT chenshengwen thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT jangjianshiuko thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT chenghuiyu thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT chenweiliang thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT changyuming thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT lokuangyao thechemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT leefuying chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT wuzongzhe chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT kaolichi chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT changfengmei chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT chenshengwen chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT jangjianshiuko chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT chenghuiyu chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT chenweiliang chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT changyuming chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing
AT lokuangyao chemicalstatesandatomicstructureevolutionofultralowenergyhighdoseboronimplantedsi110vialaserannealing