Cargando…
Impaired T-cell migration to the CNS under fingolimod and dimethyl fumarate
OBJECTIVE: To evaluate the long-term effects of treatments used in MS on the T-cell trafficking profile. METHODS: We enrolled 83 patients with MS under fingolimod (FTY), natalizumab (NTZ), dimethyl fumarate (DMF), or other disease-modifying treatments (DMTs). Blood was drawn before treatment onset a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5639463/ https://www.ncbi.nlm.nih.gov/pubmed/29075657 http://dx.doi.org/10.1212/NXI.0000000000000401 |
_version_ | 1783270887426883584 |
---|---|
author | Mathias, Amandine Perriot, Sylvain Canales, Mathieu Blatti, Claudia Gaubicher, Coline Schluep, Myriam Engelhardt, Britta Du Pasquier, Renaud |
author_facet | Mathias, Amandine Perriot, Sylvain Canales, Mathieu Blatti, Claudia Gaubicher, Coline Schluep, Myriam Engelhardt, Britta Du Pasquier, Renaud |
author_sort | Mathias, Amandine |
collection | PubMed |
description | OBJECTIVE: To evaluate the long-term effects of treatments used in MS on the T-cell trafficking profile. METHODS: We enrolled 83 patients with MS under fingolimod (FTY), natalizumab (NTZ), dimethyl fumarate (DMF), or other disease-modifying treatments (DMTs). Blood was drawn before treatment onset and up to 36–48 months. The ex vivo expression of CNS-related integrins (α4β1 and α(L) subunit of LFA-1) and the gut-related integrin (α4β7) was assessed using flow cytometry on CD4(+) and CD8(+) T cells. The adhesion profiles of CD3(+) T cells to specific integrin ligands (vascular cell adhesion molecule-1 [VCAM-1], intercellular adhesion molecule-1 [ICAM-1], and mucosal vascular addressin cell adhesion molecule-1 [MAdCAM-1]) were measured in vitro before and after 12 and 36–48 months. RESULTS: NTZ decreased the frequency of α4β1(+) and α4β7(+) integrin expressing T cells and the binding of these cells to VCAM-1 and MAdCAM-1, respectively. After 12 months, DMF induced a decreased frequency of α(L)(high)CD4(+) T cells combined with reduced binding to ICAM-1. By contrast, with FTY, there was a doubling of the frequency of α4β1(+) and α(L)(high), but a decreased frequency of α4β7(+) T cells. Strikingly, the binding of α4β1(+), α4β7(+), and to a lesser extent of α(L)(high) T cells to VCAM-1, MAdCAM-1, and ICAM-1, respectively, was decreased at month 12 under FTY treatment. The presence of manganese partially restored the binding of these T cells to VCAM-1 in vitro, suggesting that FTY interferes with integrin activation. CONCLUSIONS: In addition to NTZ, DMF and FTY but not other tested DMTs may also decrease T-cell–mediated immune surveillance of the CNS. Whether this mechanism may contribute to the onset of CNS opportunistic infections remains to be shown. |
format | Online Article Text |
id | pubmed-5639463 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-56394632017-10-26 Impaired T-cell migration to the CNS under fingolimod and dimethyl fumarate Mathias, Amandine Perriot, Sylvain Canales, Mathieu Blatti, Claudia Gaubicher, Coline Schluep, Myriam Engelhardt, Britta Du Pasquier, Renaud Neurol Neuroimmunol Neuroinflamm Article OBJECTIVE: To evaluate the long-term effects of treatments used in MS on the T-cell trafficking profile. METHODS: We enrolled 83 patients with MS under fingolimod (FTY), natalizumab (NTZ), dimethyl fumarate (DMF), or other disease-modifying treatments (DMTs). Blood was drawn before treatment onset and up to 36–48 months. The ex vivo expression of CNS-related integrins (α4β1 and α(L) subunit of LFA-1) and the gut-related integrin (α4β7) was assessed using flow cytometry on CD4(+) and CD8(+) T cells. The adhesion profiles of CD3(+) T cells to specific integrin ligands (vascular cell adhesion molecule-1 [VCAM-1], intercellular adhesion molecule-1 [ICAM-1], and mucosal vascular addressin cell adhesion molecule-1 [MAdCAM-1]) were measured in vitro before and after 12 and 36–48 months. RESULTS: NTZ decreased the frequency of α4β1(+) and α4β7(+) integrin expressing T cells and the binding of these cells to VCAM-1 and MAdCAM-1, respectively. After 12 months, DMF induced a decreased frequency of α(L)(high)CD4(+) T cells combined with reduced binding to ICAM-1. By contrast, with FTY, there was a doubling of the frequency of α4β1(+) and α(L)(high), but a decreased frequency of α4β7(+) T cells. Strikingly, the binding of α4β1(+), α4β7(+), and to a lesser extent of α(L)(high) T cells to VCAM-1, MAdCAM-1, and ICAM-1, respectively, was decreased at month 12 under FTY treatment. The presence of manganese partially restored the binding of these T cells to VCAM-1 in vitro, suggesting that FTY interferes with integrin activation. CONCLUSIONS: In addition to NTZ, DMF and FTY but not other tested DMTs may also decrease T-cell–mediated immune surveillance of the CNS. Whether this mechanism may contribute to the onset of CNS opportunistic infections remains to be shown. Lippincott Williams & Wilkins 2017-10-11 /pmc/articles/PMC5639463/ /pubmed/29075657 http://dx.doi.org/10.1212/NXI.0000000000000401 Text en Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (http://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. |
spellingShingle | Article Mathias, Amandine Perriot, Sylvain Canales, Mathieu Blatti, Claudia Gaubicher, Coline Schluep, Myriam Engelhardt, Britta Du Pasquier, Renaud Impaired T-cell migration to the CNS under fingolimod and dimethyl fumarate |
title | Impaired T-cell migration to the CNS under fingolimod and dimethyl fumarate |
title_full | Impaired T-cell migration to the CNS under fingolimod and dimethyl fumarate |
title_fullStr | Impaired T-cell migration to the CNS under fingolimod and dimethyl fumarate |
title_full_unstemmed | Impaired T-cell migration to the CNS under fingolimod and dimethyl fumarate |
title_short | Impaired T-cell migration to the CNS under fingolimod and dimethyl fumarate |
title_sort | impaired t-cell migration to the cns under fingolimod and dimethyl fumarate |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5639463/ https://www.ncbi.nlm.nih.gov/pubmed/29075657 http://dx.doi.org/10.1212/NXI.0000000000000401 |
work_keys_str_mv | AT mathiasamandine impairedtcellmigrationtothecnsunderfingolimodanddimethylfumarate AT perriotsylvain impairedtcellmigrationtothecnsunderfingolimodanddimethylfumarate AT canalesmathieu impairedtcellmigrationtothecnsunderfingolimodanddimethylfumarate AT blatticlaudia impairedtcellmigrationtothecnsunderfingolimodanddimethylfumarate AT gaubichercoline impairedtcellmigrationtothecnsunderfingolimodanddimethylfumarate AT schluepmyriam impairedtcellmigrationtothecnsunderfingolimodanddimethylfumarate AT engelhardtbritta impairedtcellmigrationtothecnsunderfingolimodanddimethylfumarate AT dupasquierrenaud impairedtcellmigrationtothecnsunderfingolimodanddimethylfumarate |