Cargando…
A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
Gene expression signatures are commonly used as predictive biomarkers, but do not capture structural features within the tissue architecture. Here we apply a 2-step machine learning framework for quantitative imaging of tumor vasculature to derive a spatially informed, prognostic gene signature. The...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643431/ https://www.ncbi.nlm.nih.gov/pubmed/29038551 http://dx.doi.org/10.1038/s41598-017-13196-4 |