Cargando…
A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
Gene expression signatures are commonly used as predictive biomarkers, but do not capture structural features within the tissue architecture. Here we apply a 2-step machine learning framework for quantitative imaging of tumor vasculature to derive a spatially informed, prognostic gene signature. The...
Autores principales: | Ing, Nathan, Huang, Fangjin, Conley, Andrew, You, Sungyong, Ma, Zhaoxuan, Klimov, Sergey, Ohe, Chisato, Yuan, Xiaopu, Amin, Mahul B., Figlin, Robert, Gertych, Arkadiusz, Knudsen, Beatrice S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643431/ https://www.ncbi.nlm.nih.gov/pubmed/29038551 http://dx.doi.org/10.1038/s41598-017-13196-4 |
Ejemplares similares
-
Data integration from pathology slides for quantitative imaging of multiple cell types within the tumor immune cell infiltrate
por: Ma, Zhaoxuan, et al.
Publicado: (2017) -
Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides
por: Gertych, Arkadiusz, et al.
Publicado: (2019) -
Spatial Mapping of Myeloid Cells and Macrophages by Multiplexed Tissue Staining
por: Saylor, Joshua, et al.
Publicado: (2018) -
Quantitative imaging for development of companion diagnostics to drugs targeting HGF/MET
por: Huang, Fangjin, et al.
Publicado: (2016) -
Receptor-interacting protein kinase 2 (RIPK2) stabilizes c-Myc and is a therapeutic target in prostate cancer metastasis
por: Yan, Yiwu, et al.
Publicado: (2022)