Cargando…

MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells

The breast cancer susceptibility proteins BRCA1 and BRCA2 have emerged as key stabilizing factors for the maintenance of replication fork integrity following replication stress. In their absence, stalled replication forks are extensively degraded by the MRE11 nuclease, leading to chemotherapeutic se...

Descripción completa

Detalles Bibliográficos
Autores principales: Lemaçon, Delphine, Jackson, Jessica, Quinet, Annabel, Brickner, Joshua R., Li, Shan, Yazinski, Stephanie, You, Zhongsheng, Ira, Grzegorz, Zou, Lee, Mosammaparast, Nima, Vindigni, Alessandro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643552/
https://www.ncbi.nlm.nih.gov/pubmed/29038425
http://dx.doi.org/10.1038/s41467-017-01180-5
_version_ 1783271555344629760
author Lemaçon, Delphine
Jackson, Jessica
Quinet, Annabel
Brickner, Joshua R.
Li, Shan
Yazinski, Stephanie
You, Zhongsheng
Ira, Grzegorz
Zou, Lee
Mosammaparast, Nima
Vindigni, Alessandro
author_facet Lemaçon, Delphine
Jackson, Jessica
Quinet, Annabel
Brickner, Joshua R.
Li, Shan
Yazinski, Stephanie
You, Zhongsheng
Ira, Grzegorz
Zou, Lee
Mosammaparast, Nima
Vindigni, Alessandro
author_sort Lemaçon, Delphine
collection PubMed
description The breast cancer susceptibility proteins BRCA1 and BRCA2 have emerged as key stabilizing factors for the maintenance of replication fork integrity following replication stress. In their absence, stalled replication forks are extensively degraded by the MRE11 nuclease, leading to chemotherapeutic sensitivity. Here we report that BRCA proteins prevent nucleolytic degradation by protecting replication forks that have undergone fork reversal upon drug treatment. The unprotected regressed arms of reversed forks are the entry point for MRE11 in BRCA-deficient cells. The CtIP protein initiates MRE11-dependent degradation, which is extended by the EXO1 nuclease. Next, we show that the initial limited resection of the regressed arms establishes the substrate for MUS81 in BRCA2-deficient cells. In turn, MUS81 cleavage of regressed forks with a ssDNA tail promotes POLD3-dependent fork rescue. We propose that targeting this pathway may represent a new strategy to modulate BRCA2-deficient cancer cell response to chemotherapeutics that cause fork degradation.
format Online
Article
Text
id pubmed-5643552
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-56435522017-10-18 MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells Lemaçon, Delphine Jackson, Jessica Quinet, Annabel Brickner, Joshua R. Li, Shan Yazinski, Stephanie You, Zhongsheng Ira, Grzegorz Zou, Lee Mosammaparast, Nima Vindigni, Alessandro Nat Commun Article The breast cancer susceptibility proteins BRCA1 and BRCA2 have emerged as key stabilizing factors for the maintenance of replication fork integrity following replication stress. In their absence, stalled replication forks are extensively degraded by the MRE11 nuclease, leading to chemotherapeutic sensitivity. Here we report that BRCA proteins prevent nucleolytic degradation by protecting replication forks that have undergone fork reversal upon drug treatment. The unprotected regressed arms of reversed forks are the entry point for MRE11 in BRCA-deficient cells. The CtIP protein initiates MRE11-dependent degradation, which is extended by the EXO1 nuclease. Next, we show that the initial limited resection of the regressed arms establishes the substrate for MUS81 in BRCA2-deficient cells. In turn, MUS81 cleavage of regressed forks with a ssDNA tail promotes POLD3-dependent fork rescue. We propose that targeting this pathway may represent a new strategy to modulate BRCA2-deficient cancer cell response to chemotherapeutics that cause fork degradation. Nature Publishing Group UK 2017-10-16 /pmc/articles/PMC5643552/ /pubmed/29038425 http://dx.doi.org/10.1038/s41467-017-01180-5 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Lemaçon, Delphine
Jackson, Jessica
Quinet, Annabel
Brickner, Joshua R.
Li, Shan
Yazinski, Stephanie
You, Zhongsheng
Ira, Grzegorz
Zou, Lee
Mosammaparast, Nima
Vindigni, Alessandro
MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells
title MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells
title_full MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells
title_fullStr MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells
title_full_unstemmed MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells
title_short MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells
title_sort mre11 and exo1 nucleases degrade reversed forks and elicit mus81-dependent fork rescue in brca2-deficient cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643552/
https://www.ncbi.nlm.nih.gov/pubmed/29038425
http://dx.doi.org/10.1038/s41467-017-01180-5
work_keys_str_mv AT lemacondelphine mre11andexo1nucleasesdegradereversedforksandelicitmus81dependentforkrescueinbrca2deficientcells
AT jacksonjessica mre11andexo1nucleasesdegradereversedforksandelicitmus81dependentforkrescueinbrca2deficientcells
AT quinetannabel mre11andexo1nucleasesdegradereversedforksandelicitmus81dependentforkrescueinbrca2deficientcells
AT bricknerjoshuar mre11andexo1nucleasesdegradereversedforksandelicitmus81dependentforkrescueinbrca2deficientcells
AT lishan mre11andexo1nucleasesdegradereversedforksandelicitmus81dependentforkrescueinbrca2deficientcells
AT yazinskistephanie mre11andexo1nucleasesdegradereversedforksandelicitmus81dependentforkrescueinbrca2deficientcells
AT youzhongsheng mre11andexo1nucleasesdegradereversedforksandelicitmus81dependentforkrescueinbrca2deficientcells
AT iragrzegorz mre11andexo1nucleasesdegradereversedforksandelicitmus81dependentforkrescueinbrca2deficientcells
AT zoulee mre11andexo1nucleasesdegradereversedforksandelicitmus81dependentforkrescueinbrca2deficientcells
AT mosammaparastnima mre11andexo1nucleasesdegradereversedforksandelicitmus81dependentforkrescueinbrca2deficientcells
AT vindignialessandro mre11andexo1nucleasesdegradereversedforksandelicitmus81dependentforkrescueinbrca2deficientcells