Cargando…

Multiple exo-glycosidases in human serum as detected with the substrate DNP-α-GalNAc. I. A new assay for lysosomal α-N-acetylgalactosaminidase

This paper presents a new assay to determine the activity of the lysosomal enzyme α-N-acetylgalactosaminidase (Naga, EC 3.2.1.49) in human serum. It is based on the use of a new chromogenic substrate, DNP-α-GalNAc (2,4-dinitrophenyl-N-acetyl-α-D-galactosaminide) and is performed at pH 4.3 and 37 °C....

Descripción completa

Detalles Bibliográficos
Autores principales: Albracht, Simon P.J., Allon, Erik, van Pelt, Johannes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645117/
https://www.ncbi.nlm.nih.gov/pubmed/29062717
http://dx.doi.org/10.1016/j.bbacli.2017.10.001
Descripción
Sumario:This paper presents a new assay to determine the activity of the lysosomal enzyme α-N-acetylgalactosaminidase (Naga, EC 3.2.1.49) in human serum. It is based on the use of a new chromogenic substrate, DNP-α-GalNAc (2,4-dinitrophenyl-N-acetyl-α-D-galactosaminide) and is performed at pH 4.3 and 37 °C. This allows continuous monitoring of the absorbance of the released DNP. The assay can be performed with a standard spectrophotometer. Compared to established methods using an endpoint assay with MU-α-GalNAc (4-methylumbelliferyl-GalNAc), the present method gives a ca. 3-fold higher specific activity, while only one tenth of the serum concentration in the assay is required. Hence, the assay is at least 30-fold more sensitive than that with MU-α-GalNAc. The pH dependence of the reaction with DNP-α-GalNAc in the pH 3.5 to 6.5 region, while using 4% serum in the assay, shows only one peak around pH 4. This pH optimum is similar to that reported with MU-α-GalNAc. In the accompanying paper (S.P.J Albracht and J. Van Pelt (2017) Multiple exo-glycosidases in human serum as detected with the substrate DNP-α-GalNAc. II. Three α-N-acetylgalactosaminidase-like activities in the pH 5 to 8 region. BBA Clin. 8 (2017) 90-96), the method is used to show that, under special assay conditions, three more Naga-like activities can be uncovered in human serum.