Cargando…
Imputation of missing genotypes within LD-blocks relying on the basic coalescent and beyond: consideration of population growth and structure
BACKGROUND: Genotypes not directly measured in genetic studies are often imputed to improve statistical power and to increase mapping resolution. The accuracy of standard imputation techniques strongly depends on the similarity of linkage disequilibrium (LD) patterns in the study and reference popul...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5646149/ https://www.ncbi.nlm.nih.gov/pubmed/29041903 http://dx.doi.org/10.1186/s12864-017-4208-2 |
_version_ | 1783272033376796672 |
---|---|
author | Kabisch, Maria Hamann, Ute Lorenzo Bermejo, Justo |
author_facet | Kabisch, Maria Hamann, Ute Lorenzo Bermejo, Justo |
author_sort | Kabisch, Maria |
collection | PubMed |
description | BACKGROUND: Genotypes not directly measured in genetic studies are often imputed to improve statistical power and to increase mapping resolution. The accuracy of standard imputation techniques strongly depends on the similarity of linkage disequilibrium (LD) patterns in the study and reference populations. Here we develop a novel approach for genotype imputation in low-recombination regions that relies on the coalescent and permits to explicitly account for population demographic factors. To test the new method, study and reference haplotypes were simulated and gene trees were inferred under the basic coalescent and also considering population growth and structure. The reference haplotypes that first coalesced with study haplotypes were used as templates for genotype imputation. Computer simulations were complemented with the analysis of real data. Genotype concordance rates were used to compare the accuracies of coalescent-based and standard (IMPUTE2) imputation. RESULTS: Simulations revealed that, in LD-blocks, imputation accuracy relying on the basic coalescent was higher and less variable than with IMPUTE2. Explicit consideration of population growth and structure, even if present, did not practically improve accuracy. The advantage of coalescent-based over standard imputation increased with the minor allele frequency and it decreased with population stratification. Results based on real data indicated that, even in low-recombination regions, further research is needed to incorporate recombination in coalescence inference, in particular for studies with genetically diverse and admixed individuals. CONCLUSIONS: To exploit the full potential of coalescent-based methods for the imputation of missing genotypes in genetic studies, further methodological research is needed to reduce computer time, to take into account recombination, and to implement these methods in user-friendly computer programs. Here we provide reproducible code which takes advantage of publicly available software to facilitate further developments in the field. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-017-4208-2) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5646149 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-56461492017-10-26 Imputation of missing genotypes within LD-blocks relying on the basic coalescent and beyond: consideration of population growth and structure Kabisch, Maria Hamann, Ute Lorenzo Bermejo, Justo BMC Genomics Methodology Article BACKGROUND: Genotypes not directly measured in genetic studies are often imputed to improve statistical power and to increase mapping resolution. The accuracy of standard imputation techniques strongly depends on the similarity of linkage disequilibrium (LD) patterns in the study and reference populations. Here we develop a novel approach for genotype imputation in low-recombination regions that relies on the coalescent and permits to explicitly account for population demographic factors. To test the new method, study and reference haplotypes were simulated and gene trees were inferred under the basic coalescent and also considering population growth and structure. The reference haplotypes that first coalesced with study haplotypes were used as templates for genotype imputation. Computer simulations were complemented with the analysis of real data. Genotype concordance rates were used to compare the accuracies of coalescent-based and standard (IMPUTE2) imputation. RESULTS: Simulations revealed that, in LD-blocks, imputation accuracy relying on the basic coalescent was higher and less variable than with IMPUTE2. Explicit consideration of population growth and structure, even if present, did not practically improve accuracy. The advantage of coalescent-based over standard imputation increased with the minor allele frequency and it decreased with population stratification. Results based on real data indicated that, even in low-recombination regions, further research is needed to incorporate recombination in coalescence inference, in particular for studies with genetically diverse and admixed individuals. CONCLUSIONS: To exploit the full potential of coalescent-based methods for the imputation of missing genotypes in genetic studies, further methodological research is needed to reduce computer time, to take into account recombination, and to implement these methods in user-friendly computer programs. Here we provide reproducible code which takes advantage of publicly available software to facilitate further developments in the field. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-017-4208-2) contains supplementary material, which is available to authorized users. BioMed Central 2017-10-17 /pmc/articles/PMC5646149/ /pubmed/29041903 http://dx.doi.org/10.1186/s12864-017-4208-2 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Methodology Article Kabisch, Maria Hamann, Ute Lorenzo Bermejo, Justo Imputation of missing genotypes within LD-blocks relying on the basic coalescent and beyond: consideration of population growth and structure |
title | Imputation of missing genotypes within LD-blocks relying on the basic coalescent and beyond: consideration of population growth and structure |
title_full | Imputation of missing genotypes within LD-blocks relying on the basic coalescent and beyond: consideration of population growth and structure |
title_fullStr | Imputation of missing genotypes within LD-blocks relying on the basic coalescent and beyond: consideration of population growth and structure |
title_full_unstemmed | Imputation of missing genotypes within LD-blocks relying on the basic coalescent and beyond: consideration of population growth and structure |
title_short | Imputation of missing genotypes within LD-blocks relying on the basic coalescent and beyond: consideration of population growth and structure |
title_sort | imputation of missing genotypes within ld-blocks relying on the basic coalescent and beyond: consideration of population growth and structure |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5646149/ https://www.ncbi.nlm.nih.gov/pubmed/29041903 http://dx.doi.org/10.1186/s12864-017-4208-2 |
work_keys_str_mv | AT kabischmaria imputationofmissinggenotypeswithinldblocksrelyingonthebasiccoalescentandbeyondconsiderationofpopulationgrowthandstructure AT hamannute imputationofmissinggenotypeswithinldblocksrelyingonthebasiccoalescentandbeyondconsiderationofpopulationgrowthandstructure AT lorenzobermejojusto imputationofmissinggenotypeswithinldblocksrelyingonthebasiccoalescentandbeyondconsiderationofpopulationgrowthandstructure |