Cargando…

Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface

Integration of transition metal dichalcogenides (TMDs) into next-generation semiconductor platforms has been limited due to a lack of effective passivation techniques for defects in TMDs. The formation of an organic-inorganic van der Waals interface between a monolayer (ML) of titanyl phthalocyanine...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Jun Hong, Sanne, Atresh, Guo, Yuzheng, Amani, Matin, Zhang, Kehao, Movva, Hema C. P., Robinson, Joshua A., Javey, Ali, Robertson, John, Banerjee, Sanjay K., Kummel, Andrew C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650486/
https://www.ncbi.nlm.nih.gov/pubmed/29062892
http://dx.doi.org/10.1126/sciadv.1701661
_version_ 1783272721700880384
author Park, Jun Hong
Sanne, Atresh
Guo, Yuzheng
Amani, Matin
Zhang, Kehao
Movva, Hema C. P.
Robinson, Joshua A.
Javey, Ali
Robertson, John
Banerjee, Sanjay K.
Kummel, Andrew C.
author_facet Park, Jun Hong
Sanne, Atresh
Guo, Yuzheng
Amani, Matin
Zhang, Kehao
Movva, Hema C. P.
Robinson, Joshua A.
Javey, Ali
Robertson, John
Banerjee, Sanjay K.
Kummel, Andrew C.
author_sort Park, Jun Hong
collection PubMed
description Integration of transition metal dichalcogenides (TMDs) into next-generation semiconductor platforms has been limited due to a lack of effective passivation techniques for defects in TMDs. The formation of an organic-inorganic van der Waals interface between a monolayer (ML) of titanyl phthalocyanine (TiOPc) and a ML of MoS(2) is investigated as a defect passivation method. A strong negative charge transfer from MoS(2) to TiOPc molecules is observed in scanning tunneling microscopy. As a result of the formation of a van der Waals interface, the I(ON)/I(OFF) in back-gated MoS(2) transistors increases by more than two orders of magnitude, whereas the degradation in the photoluminescence signal is suppressed. Density functional theory modeling reveals a van der Waals interaction that allows sufficient charge transfer to remove defect states in MoS(2). The present organic-TMD interface is a model system to control the surface/interface states in TMDs by using charge transfer to a van der Waals bonded complex.
format Online
Article
Text
id pubmed-5650486
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-56504862017-10-23 Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface Park, Jun Hong Sanne, Atresh Guo, Yuzheng Amani, Matin Zhang, Kehao Movva, Hema C. P. Robinson, Joshua A. Javey, Ali Robertson, John Banerjee, Sanjay K. Kummel, Andrew C. Sci Adv Research Articles Integration of transition metal dichalcogenides (TMDs) into next-generation semiconductor platforms has been limited due to a lack of effective passivation techniques for defects in TMDs. The formation of an organic-inorganic van der Waals interface between a monolayer (ML) of titanyl phthalocyanine (TiOPc) and a ML of MoS(2) is investigated as a defect passivation method. A strong negative charge transfer from MoS(2) to TiOPc molecules is observed in scanning tunneling microscopy. As a result of the formation of a van der Waals interface, the I(ON)/I(OFF) in back-gated MoS(2) transistors increases by more than two orders of magnitude, whereas the degradation in the photoluminescence signal is suppressed. Density functional theory modeling reveals a van der Waals interaction that allows sufficient charge transfer to remove defect states in MoS(2). The present organic-TMD interface is a model system to control the surface/interface states in TMDs by using charge transfer to a van der Waals bonded complex. American Association for the Advancement of Science 2017-10-20 /pmc/articles/PMC5650486/ /pubmed/29062892 http://dx.doi.org/10.1126/sciadv.1701661 Text en Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Park, Jun Hong
Sanne, Atresh
Guo, Yuzheng
Amani, Matin
Zhang, Kehao
Movva, Hema C. P.
Robinson, Joshua A.
Javey, Ali
Robertson, John
Banerjee, Sanjay K.
Kummel, Andrew C.
Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface
title Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface
title_full Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface
title_fullStr Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface
title_full_unstemmed Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface
title_short Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface
title_sort defect passivation of transition metal dichalcogenides via a charge transfer van der waals interface
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650486/
https://www.ncbi.nlm.nih.gov/pubmed/29062892
http://dx.doi.org/10.1126/sciadv.1701661
work_keys_str_mv AT parkjunhong defectpassivationoftransitionmetaldichalcogenidesviaachargetransfervanderwaalsinterface
AT sanneatresh defectpassivationoftransitionmetaldichalcogenidesviaachargetransfervanderwaalsinterface
AT guoyuzheng defectpassivationoftransitionmetaldichalcogenidesviaachargetransfervanderwaalsinterface
AT amanimatin defectpassivationoftransitionmetaldichalcogenidesviaachargetransfervanderwaalsinterface
AT zhangkehao defectpassivationoftransitionmetaldichalcogenidesviaachargetransfervanderwaalsinterface
AT movvahemacp defectpassivationoftransitionmetaldichalcogenidesviaachargetransfervanderwaalsinterface
AT robinsonjoshuaa defectpassivationoftransitionmetaldichalcogenidesviaachargetransfervanderwaalsinterface
AT javeyali defectpassivationoftransitionmetaldichalcogenidesviaachargetransfervanderwaalsinterface
AT robertsonjohn defectpassivationoftransitionmetaldichalcogenidesviaachargetransfervanderwaalsinterface
AT banerjeesanjayk defectpassivationoftransitionmetaldichalcogenidesviaachargetransfervanderwaalsinterface
AT kummelandrewc defectpassivationoftransitionmetaldichalcogenidesviaachargetransfervanderwaalsinterface