Cargando…

Molecular dynamics simulation analysis of Focal Adhesive Kinase (FAK) docked with solanesol as an anti-cancer agent

Focal adhesion kinase (FAK) plays a primary role in regulating the activity of many signaling molecules. Increased FAK expression has been associated in a series of cellular processes like cell migration and survival. FAK inhibition by an anti cancer agent is critical. Therefore, it is of interest t...

Descripción completa

Detalles Bibliográficos
Autores principales: Daneial, Betty, Joseph, Jacob Paul Vazhappilly, Ramakrishna, Guruprasad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651220/
https://www.ncbi.nlm.nih.gov/pubmed/29081606
http://dx.doi.org/10.6026/97320630013274
Descripción
Sumario:Focal adhesion kinase (FAK) plays a primary role in regulating the activity of many signaling molecules. Increased FAK expression has been associated in a series of cellular processes like cell migration and survival. FAK inhibition by an anti cancer agent is critical. Therefore, it is of interest to identify, modify, design, improve and develop molecules to inhibit FAK. Solanesol is known to have inhibitory activity towards FAK. However, the molecular principles of its binding with FAK is unknown. Solanesol is a highly flexible ligand (25 rotatable bonds). Hence, ligand-protein docking was completed using AutoDock with a modified contact based scoring function. The FAK-solanesol complex model was further energy minimized and simulated in GROMOS96 (53a6) force field followed by post simulation analysis such as Root mean square deviation (RMSD), root mean square fluctuations (RMSF) and solvent accessible surface area (SASA) calculations to explain solanesol-FAK binding.