Cargando…
Alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency
BACKGROUND: Sirtuins are NAD(+) dependent deacetylases, which regulate mitochondrial energy metabolism as well as cellular response to stress. The NAD/NADH-system plays a crucial role in oxidative phosphorylation linking sirtuins and the mitochondrial respiratory chain. Furthermore, sirtuins are abl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5653369/ https://www.ncbi.nlm.nih.gov/pubmed/29059204 http://dx.doi.org/10.1371/journal.pone.0186517 |
_version_ | 1783273219838443520 |
---|---|
author | Potthast, Arne Björn Heuer, Theresa Warneke, Simone Johanna Das, Anibh Martin |
author_facet | Potthast, Arne Björn Heuer, Theresa Warneke, Simone Johanna Das, Anibh Martin |
author_sort | Potthast, Arne Björn |
collection | PubMed |
description | BACKGROUND: Sirtuins are NAD(+) dependent deacetylases, which regulate mitochondrial energy metabolism as well as cellular response to stress. The NAD/NADH-system plays a crucial role in oxidative phosphorylation linking sirtuins and the mitochondrial respiratory chain. Furthermore, sirtuins are able to directly deacetylate and activate different complexes of the respiratory chain. This prompted us to analyse sirtuin levels in skin fibroblasts from patients with cytochrome c-oxidase (COX) deficiency and to test the impact of different pharmaceutical activators of sirtuins (SRT1720, paeonol) to modulate sirtuins and possibly respiratory chain enzymes in patient cells in vitro. METHODS: We assayed intracellular levels of sirtuin 1 and the mitochondrial sirtuins SIRT3 and SIRT4 in human fibroblasts from patients with COX- deficiency. Furthermore, sirtuins were measured after inhibiting complex IV in healthy control fibroblasts by cyanide and after incubation with activators SRT1720 and paeonol. To determine the effect of sirtuin inhibition at the cellular level we measured total cellular acetylation (control and patient cells, with and without treatment) by Western blot. RESULTS: We observed a significant decrease in cellular levels of all three sirtuins at the activity, protein and transcriptional level (by 15% to 50%) in COX-deficient cells. Additionally, the intracellular concentration of NAD(+) was reduced in patient cells. We mimicked the biochemical phenotype of COX- deficiency by incubating healthy fibroblasts with cyanide and observed reduced sirtuin levels. A pharmacological activation of sirtuins resulted in normalized sirtuin levels in patient cells. Hyper acetylation was also reversible after treatment with sirtuin activators. Pharmacological modulation of sirtuins resulted in altered respiratory chain complex activities. CONCLUSIONS: We found inhibition of situins 1, 3 and 4 at activity, protein and transcriptional levels in fibroblasts from patient with COX-deficiency. Pharmacological activators were able to restore reduced sirtuin levels and thereby modulate respiratory chain activities. |
format | Online Article Text |
id | pubmed-5653369 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56533692017-11-08 Alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency Potthast, Arne Björn Heuer, Theresa Warneke, Simone Johanna Das, Anibh Martin PLoS One Research Article BACKGROUND: Sirtuins are NAD(+) dependent deacetylases, which regulate mitochondrial energy metabolism as well as cellular response to stress. The NAD/NADH-system plays a crucial role in oxidative phosphorylation linking sirtuins and the mitochondrial respiratory chain. Furthermore, sirtuins are able to directly deacetylate and activate different complexes of the respiratory chain. This prompted us to analyse sirtuin levels in skin fibroblasts from patients with cytochrome c-oxidase (COX) deficiency and to test the impact of different pharmaceutical activators of sirtuins (SRT1720, paeonol) to modulate sirtuins and possibly respiratory chain enzymes in patient cells in vitro. METHODS: We assayed intracellular levels of sirtuin 1 and the mitochondrial sirtuins SIRT3 and SIRT4 in human fibroblasts from patients with COX- deficiency. Furthermore, sirtuins were measured after inhibiting complex IV in healthy control fibroblasts by cyanide and after incubation with activators SRT1720 and paeonol. To determine the effect of sirtuin inhibition at the cellular level we measured total cellular acetylation (control and patient cells, with and without treatment) by Western blot. RESULTS: We observed a significant decrease in cellular levels of all three sirtuins at the activity, protein and transcriptional level (by 15% to 50%) in COX-deficient cells. Additionally, the intracellular concentration of NAD(+) was reduced in patient cells. We mimicked the biochemical phenotype of COX- deficiency by incubating healthy fibroblasts with cyanide and observed reduced sirtuin levels. A pharmacological activation of sirtuins resulted in normalized sirtuin levels in patient cells. Hyper acetylation was also reversible after treatment with sirtuin activators. Pharmacological modulation of sirtuins resulted in altered respiratory chain complex activities. CONCLUSIONS: We found inhibition of situins 1, 3 and 4 at activity, protein and transcriptional levels in fibroblasts from patient with COX-deficiency. Pharmacological activators were able to restore reduced sirtuin levels and thereby modulate respiratory chain activities. Public Library of Science 2017-10-23 /pmc/articles/PMC5653369/ /pubmed/29059204 http://dx.doi.org/10.1371/journal.pone.0186517 Text en © 2017 Potthast et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Potthast, Arne Björn Heuer, Theresa Warneke, Simone Johanna Das, Anibh Martin Alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency |
title | Alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency |
title_full | Alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency |
title_fullStr | Alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency |
title_full_unstemmed | Alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency |
title_short | Alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency |
title_sort | alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5653369/ https://www.ncbi.nlm.nih.gov/pubmed/29059204 http://dx.doi.org/10.1371/journal.pone.0186517 |
work_keys_str_mv | AT potthastarnebjorn alterationsofsirtuinsinmitochondrialcytochromecoxidasedeficiency AT heuertheresa alterationsofsirtuinsinmitochondrialcytochromecoxidasedeficiency AT warnekesimonejohanna alterationsofsirtuinsinmitochondrialcytochromecoxidasedeficiency AT dasanibhmartin alterationsofsirtuinsinmitochondrialcytochromecoxidasedeficiency |