Cargando…
In situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated SH-SY5Y cells
The progression of Alzheimer’s disease is causatively linked to the accumulation of amyloid-β aggregates in the brain, however, it is not clear how the amyloid aggregates initiate the death of neuronal cells. The in vitro toxic effects of amyloid peptides are most commonly examined using the human n...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655426/ https://www.ncbi.nlm.nih.gov/pubmed/29065138 http://dx.doi.org/10.1371/journal.pone.0186636 |
_version_ | 1783273532186165248 |
---|---|
author | Krishtal, Jekaterina Bragina, Olga Metsla, Kristel Palumaa, Peep Tõugu, Vello |
author_facet | Krishtal, Jekaterina Bragina, Olga Metsla, Kristel Palumaa, Peep Tõugu, Vello |
author_sort | Krishtal, Jekaterina |
collection | PubMed |
description | The progression of Alzheimer’s disease is causatively linked to the accumulation of amyloid-β aggregates in the brain, however, it is not clear how the amyloid aggregates initiate the death of neuronal cells. The in vitro toxic effects of amyloid peptides are most commonly examined using the human neuroblastoma derived SH-SY5Y cell line and here we show that differentiated neuron-like SH-SY5Y cells are more sensitive to amyloid peptides than non-differentiated cells, because the latter lack long neurites. Exogenous soluble amyloid-β 1–42 covered cell bodies and whole neurites in differentiated cells with dense fibrils, causing neurite beading and fragmentation, whereas preformed amyloid-β 1–42 fibrils had no toxic effects. Importantly, spontaneously fibrillizing amyloid-β 1–42 peptide exhibited substantially higher cellular toxicity than amyloid-β 1–40, which did not form fibrils under the experimental conditions. These results support the hypothesis that peptide toxicity is related to the active fibrillization process in the incubation mixture. |
format | Online Article Text |
id | pubmed-5655426 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56554262017-11-09 In situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated SH-SY5Y cells Krishtal, Jekaterina Bragina, Olga Metsla, Kristel Palumaa, Peep Tõugu, Vello PLoS One Research Article The progression of Alzheimer’s disease is causatively linked to the accumulation of amyloid-β aggregates in the brain, however, it is not clear how the amyloid aggregates initiate the death of neuronal cells. The in vitro toxic effects of amyloid peptides are most commonly examined using the human neuroblastoma derived SH-SY5Y cell line and here we show that differentiated neuron-like SH-SY5Y cells are more sensitive to amyloid peptides than non-differentiated cells, because the latter lack long neurites. Exogenous soluble amyloid-β 1–42 covered cell bodies and whole neurites in differentiated cells with dense fibrils, causing neurite beading and fragmentation, whereas preformed amyloid-β 1–42 fibrils had no toxic effects. Importantly, spontaneously fibrillizing amyloid-β 1–42 peptide exhibited substantially higher cellular toxicity than amyloid-β 1–40, which did not form fibrils under the experimental conditions. These results support the hypothesis that peptide toxicity is related to the active fibrillization process in the incubation mixture. Public Library of Science 2017-10-24 /pmc/articles/PMC5655426/ /pubmed/29065138 http://dx.doi.org/10.1371/journal.pone.0186636 Text en © 2017 Krishtal et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Krishtal, Jekaterina Bragina, Olga Metsla, Kristel Palumaa, Peep Tõugu, Vello In situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated SH-SY5Y cells |
title | In situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated SH-SY5Y cells |
title_full | In situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated SH-SY5Y cells |
title_fullStr | In situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated SH-SY5Y cells |
title_full_unstemmed | In situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated SH-SY5Y cells |
title_short | In situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated SH-SY5Y cells |
title_sort | in situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated sh-sy5y cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655426/ https://www.ncbi.nlm.nih.gov/pubmed/29065138 http://dx.doi.org/10.1371/journal.pone.0186636 |
work_keys_str_mv | AT krishtaljekaterina insitufibrillizingamyloidbeta142inducesneuritedegenerationandapoptosisofdifferentiatedshsy5ycells AT braginaolga insitufibrillizingamyloidbeta142inducesneuritedegenerationandapoptosisofdifferentiatedshsy5ycells AT metslakristel insitufibrillizingamyloidbeta142inducesneuritedegenerationandapoptosisofdifferentiatedshsy5ycells AT palumaapeep insitufibrillizingamyloidbeta142inducesneuritedegenerationandapoptosisofdifferentiatedshsy5ycells AT touguvello insitufibrillizingamyloidbeta142inducesneuritedegenerationandapoptosisofdifferentiatedshsy5ycells |