Cargando…

Studying the Progression of Amyloid Pathology and Its Therapy Using Translational Longitudinal Model of Accumulation and Distribution of Amyloid Beta

Long‐term effects of amyloid targeted therapy can be studied using a mechanistic translational model of amyloid beta (Aβ) distribution and aggregation calibrated on published data in mouse and human species. Alzheimer disease (AD) pathology is modeled utilizing age‐dependent pathological evolution f...

Descripción completa

Detalles Bibliográficos
Autores principales: Karelina, Tatiana, Demin, Oleg, Duvvuri, Sridhar, Nicholas, Timothy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658285/
https://www.ncbi.nlm.nih.gov/pubmed/28913897
http://dx.doi.org/10.1002/psp4.12249
Descripción
Sumario:Long‐term effects of amyloid targeted therapy can be studied using a mechanistic translational model of amyloid beta (Aβ) distribution and aggregation calibrated on published data in mouse and human species. Alzheimer disease (AD) pathology is modeled utilizing age‐dependent pathological evolution for rate constants and several variants of explicit functions for Aβ toxicity influencing cognitive outcomes (Adas‐cog). Preventive Aβ targeted therapies were simulated to minimize the Aβ difference from healthy physiological levels. Therapeutic targeted simulations provided similar predictions for mouse and human studies. Our model predicts that: (1) at least 1 year (2 years for preclinical AD) of treatment is needed to observe cognitive effects; (2) under the hypothesis with functional importance of Aβ, a 15% decrease in Aβ (using an imaging biomarker) is related to 15–20% cognition improvement by immunotherapy. Despite negative outcomes in clinical trials, Aβ continues to remain a prospective target demanding careful assessment of mechanistic effect and duration of trial design.