Cargando…
Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture
BACKGROUND: Neurons are highly polarized cells consisting of three distinct functional domains: the cell body (and associated dendrites), the axon and the synapse. Previously, it was believed that the clinical phenotypes of neurodegenerative diseases were caused by the loss of entire neurons, howeve...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5659037/ https://www.ncbi.nlm.nih.gov/pubmed/29078798 http://dx.doi.org/10.1186/s13024-017-0221-9 |
_version_ | 1783274104345853952 |
---|---|
author | Graham, Laura C. Eaton, Samantha L. Brunton, Paula J. Atrih, Abdelmadjid Smith, Colin Lamont, Douglas J. Gillingwater, Thomas H. Pennetta, Giuseppa Skehel, Paul Wishart, Thomas M. |
author_facet | Graham, Laura C. Eaton, Samantha L. Brunton, Paula J. Atrih, Abdelmadjid Smith, Colin Lamont, Douglas J. Gillingwater, Thomas H. Pennetta, Giuseppa Skehel, Paul Wishart, Thomas M. |
author_sort | Graham, Laura C. |
collection | PubMed |
description | BACKGROUND: Neurons are highly polarized cells consisting of three distinct functional domains: the cell body (and associated dendrites), the axon and the synapse. Previously, it was believed that the clinical phenotypes of neurodegenerative diseases were caused by the loss of entire neurons, however it has recently become apparent that these neuronal sub-compartments can degenerate independently, with synapses being particularly vulnerable to a broad range of stimuli. Whilst the properties governing the differential degenerative mechanisms remain unknown, mitochondria consistently appear in the literature, suggesting these somewhat promiscuous organelles may play a role in affecting synaptic stability. Synaptic and non-synaptic mitochondrial subpools are known to have different enzymatic properties (first demonstrated by Lai et al., 1977). However, the molecular basis underpinning these alterations, and their effects on morphology, has not been well documented. METHODS: The current study has employed electron microscopy, label-free proteomics and in silico analyses to characterize the morphological and biochemical properties of discrete sub-populations of mitochondria. The physiological relevance of these findings was confirmed in-vivo using a molecular genetic approach at the Drosophila neuromuscular junction. RESULTS: Here, we demonstrate that mitochondria at the synaptic terminal are indeed morphologically different to non-synaptic mitochondria, in both rodents and human patients. Furthermore, generation of proteomic profiles reveals distinct molecular fingerprints – highlighting that the properties of complex I may represent an important specialisation of synaptic mitochondria. Evidence also suggests that at least 30% of the mitochondrial enzymatic activity differences previously reported can be accounted for by protein abundance. Finally, we demonstrate that the molecular differences between discrete mitochondrial sub-populations are capable of selectively influencing synaptic morphology in-vivo. We offer several novel mitochondrial candidates that have the propensity to significantly alter the synaptic architecture in-vivo. CONCLUSIONS: Our study demonstrates discrete proteomic profiles exist dependent upon mitochondrial subcellular localization and selective alteration of intrinsic mitochondrial proteins alters synaptic morphology in-vivo. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13024-017-0221-9) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5659037 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-56590372017-11-01 Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture Graham, Laura C. Eaton, Samantha L. Brunton, Paula J. Atrih, Abdelmadjid Smith, Colin Lamont, Douglas J. Gillingwater, Thomas H. Pennetta, Giuseppa Skehel, Paul Wishart, Thomas M. Mol Neurodegener Research Article BACKGROUND: Neurons are highly polarized cells consisting of three distinct functional domains: the cell body (and associated dendrites), the axon and the synapse. Previously, it was believed that the clinical phenotypes of neurodegenerative diseases were caused by the loss of entire neurons, however it has recently become apparent that these neuronal sub-compartments can degenerate independently, with synapses being particularly vulnerable to a broad range of stimuli. Whilst the properties governing the differential degenerative mechanisms remain unknown, mitochondria consistently appear in the literature, suggesting these somewhat promiscuous organelles may play a role in affecting synaptic stability. Synaptic and non-synaptic mitochondrial subpools are known to have different enzymatic properties (first demonstrated by Lai et al., 1977). However, the molecular basis underpinning these alterations, and their effects on morphology, has not been well documented. METHODS: The current study has employed electron microscopy, label-free proteomics and in silico analyses to characterize the morphological and biochemical properties of discrete sub-populations of mitochondria. The physiological relevance of these findings was confirmed in-vivo using a molecular genetic approach at the Drosophila neuromuscular junction. RESULTS: Here, we demonstrate that mitochondria at the synaptic terminal are indeed morphologically different to non-synaptic mitochondria, in both rodents and human patients. Furthermore, generation of proteomic profiles reveals distinct molecular fingerprints – highlighting that the properties of complex I may represent an important specialisation of synaptic mitochondria. Evidence also suggests that at least 30% of the mitochondrial enzymatic activity differences previously reported can be accounted for by protein abundance. Finally, we demonstrate that the molecular differences between discrete mitochondrial sub-populations are capable of selectively influencing synaptic morphology in-vivo. We offer several novel mitochondrial candidates that have the propensity to significantly alter the synaptic architecture in-vivo. CONCLUSIONS: Our study demonstrates discrete proteomic profiles exist dependent upon mitochondrial subcellular localization and selective alteration of intrinsic mitochondrial proteins alters synaptic morphology in-vivo. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13024-017-0221-9) contains supplementary material, which is available to authorized users. BioMed Central 2017-10-27 /pmc/articles/PMC5659037/ /pubmed/29078798 http://dx.doi.org/10.1186/s13024-017-0221-9 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Graham, Laura C. Eaton, Samantha L. Brunton, Paula J. Atrih, Abdelmadjid Smith, Colin Lamont, Douglas J. Gillingwater, Thomas H. Pennetta, Giuseppa Skehel, Paul Wishart, Thomas M. Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture |
title | Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture |
title_full | Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture |
title_fullStr | Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture |
title_full_unstemmed | Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture |
title_short | Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture |
title_sort | proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5659037/ https://www.ncbi.nlm.nih.gov/pubmed/29078798 http://dx.doi.org/10.1186/s13024-017-0221-9 |
work_keys_str_mv | AT grahamlaurac proteomicprofilingofneuronalmitochondriarevealsmodulatorsofsynapticarchitecture AT eatonsamanthal proteomicprofilingofneuronalmitochondriarevealsmodulatorsofsynapticarchitecture AT bruntonpaulaj proteomicprofilingofneuronalmitochondriarevealsmodulatorsofsynapticarchitecture AT atrihabdelmadjid proteomicprofilingofneuronalmitochondriarevealsmodulatorsofsynapticarchitecture AT smithcolin proteomicprofilingofneuronalmitochondriarevealsmodulatorsofsynapticarchitecture AT lamontdouglasj proteomicprofilingofneuronalmitochondriarevealsmodulatorsofsynapticarchitecture AT gillingwaterthomash proteomicprofilingofneuronalmitochondriarevealsmodulatorsofsynapticarchitecture AT pennettagiuseppa proteomicprofilingofneuronalmitochondriarevealsmodulatorsofsynapticarchitecture AT skehelpaul proteomicprofilingofneuronalmitochondriarevealsmodulatorsofsynapticarchitecture AT wishartthomasm proteomicprofilingofneuronalmitochondriarevealsmodulatorsofsynapticarchitecture |