Cargando…
Description of Changes in Crystal Orientations by the Elements of Logarithm of a Rotation Matrix
The logarithm lnR of rotation matrix R is a skew symmetric tensor consisting of three independent elements of real numbers. In addition to the Euler angles and the axis/angle pair, the elements of lnR called the log angles are also the set of three parameters of R. In this paper, we will show that...
Autores principales: | Onaka, Susumu, Hayashi, Kunio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662074/ https://www.ncbi.nlm.nih.gov/pubmed/29109815 http://dx.doi.org/10.1155/2017/4893956 |
Ejemplares similares
-
The anatomy of $\varepsilon$'/$\varepsilon$ beyond leading logarithms with improved hadronic matrix elements
por: Buras, Andrzej J, et al.
Publicado: (1993) -
The anatomy of $\varepsilon$'/$\varepsilon$ beyond leading logarithms with improved hadronic matrix elements
por: Jamin, Matthias
Publicado: (1993) -
Liquid Crystal Lensacons, Logarithmic and Linear Axicons
por: Algorri, José Francisco, et al.
Publicado: (2014) -
Logarithmic descriptions of whitehead groups and class groups for p-groups
por: Oliver, Robert, et al.
Publicado: (1988) -
The logarithmic contributions to the [Formula: see text] asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering
por: Behring, A., et al.
Publicado: (2014)