Cargando…

Genome-wide screen of gamma-secretase–mediated intramembrane cleavage of receptor tyrosine kinases

Receptor tyrosine kinases (RTKs) have been demonstrated to signal via regulated intramembrane proteolysis, in which ectodomain shedding and subsequent intramembrane cleavage by gamma-secretase leads to release of a soluble intracellular receptor fragment with functional activity. For most RTKs, howe...

Descripción completa

Detalles Bibliográficos
Autores principales: Merilahti, Johannes A. M., Ojala, Veera K., Knittle, Anna M., Pulliainen, Arto T., Elenius, Klaus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662267/
https://www.ncbi.nlm.nih.gov/pubmed/28904208
http://dx.doi.org/10.1091/mbc.E17-04-0261
Descripción
Sumario:Receptor tyrosine kinases (RTKs) have been demonstrated to signal via regulated intramembrane proteolysis, in which ectodomain shedding and subsequent intramembrane cleavage by gamma-secretase leads to release of a soluble intracellular receptor fragment with functional activity. For most RTKs, however, it is unknown whether they can exploit this new signaling mechanism. Here we used a system-wide screen to address the frequency of susceptibility to gamma-secretase cleavage among human RTKs. The screen covering 45 of the 55 human RTKs identified 12 new as well as all nine previously published gamma-secretase substrates. We biochemically validated the screen by demonstrating that the release of a soluble intracellular fragment from endogenous AXL was dependent on the sheddase disintegrin and metalloprotease 10 (ADAM10) and the gamma-secretase component presenilin-1. Functional analysis of the cleavable RTKs indicated that proliferation promoted by overexpression of the TAM family members AXL or TYRO3 depends on gamma-secretase cleavage. Taken together, these data indicate that gamma-secretase–mediated cleavage provides an additional signaling mechanism for numerous human RTKs.