Cargando…

Blocking autophagy enhances the pro-apoptotic effect of bufalin on human gastric cancer cells through endoplasmic reticulum stress

Bufalin has been used to treat cancer for several years. However, the molecular mechanisms for its anti-tumor function are not fully understood. This work aimed to investigate the effect of bufalin on the proliferation and apoptosis of human gastric cancer (HGC) cells and the roles of endoplasmic re...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Hongyan, Li, Qinghua, Pang, Jie, Jin, Huilin, Li, Hongwei, Yang, Xiaoying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665466/
https://www.ncbi.nlm.nih.gov/pubmed/28838965
http://dx.doi.org/10.1242/bio.026344
Descripción
Sumario:Bufalin has been used to treat cancer for several years. However, the molecular mechanisms for its anti-tumor function are not fully understood. This work aimed to investigate the effect of bufalin on the proliferation and apoptosis of human gastric cancer (HGC) cells and the roles of endoplasmic reticulum (ER) stress and autophagy in bufalin-induced apoptosis. HGC cell lines, SGC7901 and BGC823, were treated with different concentrations of bufalin or 80 nmol/l bufalin for 1, 2, 3 and 4 days. Cell counting kit-8 (CCK-8) assay and direct cell counting method were used to detect proliferation. Cell cycle arrest and apoptosis was detected using flow cytometry. Protein levels of caspase-3, -8, Bax/Bcl-2, Beclin-1, LC3, inositol-requiring enzyme 1 (IRE1) and C/EBP homologous protein (CHOP) were determined using western blotting. Autophagy was blocked using 3-methyladenine (3MA) or Atg5 siRNA to evaluate the effect of autophagy on bufalin-induced apoptosis. The IRE1 and CHOP were knocked down using specific siRNA to determine the pathway involved in bufalin-induced autophagy. It was found that bufalin significantly suppressed proliferation of SGC7901 and BGC823 cells and induced apoptosis in a time- and dose-dependent manner. The mechanism responsible for bufalin-induced apoptosis was the formation of ER stress via the IRE1-JNK pathway. Moreover, autophagy was activated during ER stress, and blocking autophagy significantly exacerbated bufalin-induced apoptosis.