Cargando…

Circulating exosomes carrying an immunosuppressive cargo interfere with cellular immunotherapy in acute myeloid leukemia

Exosomes, small (30–150 nm) extracellular vesicles (EVs) isolated from plasma of patients with acute myeloid leukemia (AML) carry leukemia-associated antigens and multiple inhibitory molecules. Circulating exosomes can deliver suppressive cargos to immune recipient cells, inhibiting anti-tumor activ...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Chang-Sook, Sharma, Priyanka, Yerneni, Saigopalakrishna S., Simms, Patricia, Jackson, Edwin K., Whiteside, Theresa L., Boyiadzis, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666018/
https://www.ncbi.nlm.nih.gov/pubmed/29089618
http://dx.doi.org/10.1038/s41598-017-14661-w
Descripción
Sumario:Exosomes, small (30–150 nm) extracellular vesicles (EVs) isolated from plasma of patients with acute myeloid leukemia (AML) carry leukemia-associated antigens and multiple inhibitory molecules. Circulating exosomes can deliver suppressive cargos to immune recipient cells, inhibiting anti-tumor activities. Pre-therapy plasma of refractory/relapsed AML patients contains elevated levels of immunosuppressive exosomes which interfere with anti-leukemia functions of activated immune cells. We show that exosomes isolated from pre-therapy plasma of the AML patients receiving adoptive NK-92 cell therapy block anti-leukemia cytotoxicity of NK-92 cells and other NK-92 cell functions. NK-92 cells do not internalize AML exosomes. Instead, signaling via surface receptors expressed on NK-92 cells, AML exosomes simultaneously deliver multiple inhibitory ligands to the cognate receptors. The signals are processed downstream and activate multiple suppressive pathways in NK-92 cells. AML exosomes reprogram NK-92 cells, interfering with their anti-leukemia functions and reducing the therapeutic potential of adoptive cell transfers. Plasma-derived exosomes interfere with immune cells used for adoptive cell therapy and may limit expected therapeutic benefits of adoptive cell therapy.