Cargando…
Attenuated PDGF signaling drives alveolar and microvascular defects in neonatal chronic lung disease
Neonatal chronic lung disease (nCLD) affects a significant number of neonates receiving mechanical ventilation with oxygen‐rich gas (MV‐O(2)). Regardless, the primary molecular driver of the disease remains elusive. We discover significant enrichment for SNPs in the PDGF‐Rα gene in preterms with nCL...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666314/ https://www.ncbi.nlm.nih.gov/pubmed/28923828 http://dx.doi.org/10.15252/emmm.201607308 |
_version_ | 1783275284710031360 |
---|---|
author | Oak, Prajakta Pritzke, Tina Thiel, Isabella Koschlig, Markus Mous, Daphne S Windhorst, Anita Jain, Noopur Eickelberg, Oliver Foerster, Kai Schulze, Andreas Goepel, Wolfgang Reicherzer, Tobias Ehrhardt, Harald Rottier, Robbert J Ahnert, Peter Gortner, Ludwig Desai, Tushar J Hilgendorff, Anne |
author_facet | Oak, Prajakta Pritzke, Tina Thiel, Isabella Koschlig, Markus Mous, Daphne S Windhorst, Anita Jain, Noopur Eickelberg, Oliver Foerster, Kai Schulze, Andreas Goepel, Wolfgang Reicherzer, Tobias Ehrhardt, Harald Rottier, Robbert J Ahnert, Peter Gortner, Ludwig Desai, Tushar J Hilgendorff, Anne |
author_sort | Oak, Prajakta |
collection | PubMed |
description | Neonatal chronic lung disease (nCLD) affects a significant number of neonates receiving mechanical ventilation with oxygen‐rich gas (MV‐O(2)). Regardless, the primary molecular driver of the disease remains elusive. We discover significant enrichment for SNPs in the PDGF‐Rα gene in preterms with nCLD and directly test the effect of PDGF‐Rα haploinsufficiency on the development of nCLD using a preclinical mouse model of MV‐O(2). In the context of MV‐O(2), attenuated PDGF signaling independently contributes to defective septation and endothelial cell apoptosis stemming from a PDGF‐Rα‐dependent reduction in lung VEGF‐A. TGF‐β contributes to the PDGF‐Rα‐dependent decrease in myofibroblast function. Remarkably, endotracheal treatment with exogenous PDGF‐A rescues both the lung defects in haploinsufficient mice undergoing MV‐O(2). Overall, our results establish attenuated PDGF signaling as an important driver of nCLD pathology with provision of PDGF‐A as a protective strategy for newborns undergoing MV‐O(2). |
format | Online Article Text |
id | pubmed-5666314 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-56663142017-11-09 Attenuated PDGF signaling drives alveolar and microvascular defects in neonatal chronic lung disease Oak, Prajakta Pritzke, Tina Thiel, Isabella Koschlig, Markus Mous, Daphne S Windhorst, Anita Jain, Noopur Eickelberg, Oliver Foerster, Kai Schulze, Andreas Goepel, Wolfgang Reicherzer, Tobias Ehrhardt, Harald Rottier, Robbert J Ahnert, Peter Gortner, Ludwig Desai, Tushar J Hilgendorff, Anne EMBO Mol Med Research Articles Neonatal chronic lung disease (nCLD) affects a significant number of neonates receiving mechanical ventilation with oxygen‐rich gas (MV‐O(2)). Regardless, the primary molecular driver of the disease remains elusive. We discover significant enrichment for SNPs in the PDGF‐Rα gene in preterms with nCLD and directly test the effect of PDGF‐Rα haploinsufficiency on the development of nCLD using a preclinical mouse model of MV‐O(2). In the context of MV‐O(2), attenuated PDGF signaling independently contributes to defective septation and endothelial cell apoptosis stemming from a PDGF‐Rα‐dependent reduction in lung VEGF‐A. TGF‐β contributes to the PDGF‐Rα‐dependent decrease in myofibroblast function. Remarkably, endotracheal treatment with exogenous PDGF‐A rescues both the lung defects in haploinsufficient mice undergoing MV‐O(2). Overall, our results establish attenuated PDGF signaling as an important driver of nCLD pathology with provision of PDGF‐A as a protective strategy for newborns undergoing MV‐O(2). John Wiley and Sons Inc. 2017-09-18 2017-11 /pmc/articles/PMC5666314/ /pubmed/28923828 http://dx.doi.org/10.15252/emmm.201607308 Text en © 2017 Helmholtz Zentrum München Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the Creative Commons Attribution 4.0 (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Oak, Prajakta Pritzke, Tina Thiel, Isabella Koschlig, Markus Mous, Daphne S Windhorst, Anita Jain, Noopur Eickelberg, Oliver Foerster, Kai Schulze, Andreas Goepel, Wolfgang Reicherzer, Tobias Ehrhardt, Harald Rottier, Robbert J Ahnert, Peter Gortner, Ludwig Desai, Tushar J Hilgendorff, Anne Attenuated PDGF signaling drives alveolar and microvascular defects in neonatal chronic lung disease |
title | Attenuated PDGF signaling drives alveolar and microvascular defects in neonatal chronic lung disease |
title_full | Attenuated PDGF signaling drives alveolar and microvascular defects in neonatal chronic lung disease |
title_fullStr | Attenuated PDGF signaling drives alveolar and microvascular defects in neonatal chronic lung disease |
title_full_unstemmed | Attenuated PDGF signaling drives alveolar and microvascular defects in neonatal chronic lung disease |
title_short | Attenuated PDGF signaling drives alveolar and microvascular defects in neonatal chronic lung disease |
title_sort | attenuated pdgf signaling drives alveolar and microvascular defects in neonatal chronic lung disease |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666314/ https://www.ncbi.nlm.nih.gov/pubmed/28923828 http://dx.doi.org/10.15252/emmm.201607308 |
work_keys_str_mv | AT oakprajakta attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease AT pritzketina attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease AT thielisabella attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease AT koschligmarkus attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease AT mousdaphnes attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease AT windhorstanita attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease AT jainnoopur attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease AT eickelbergoliver attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease AT foersterkai attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease AT schulzeandreas attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease AT goepelwolfgang attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease AT reicherzertobias attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease AT ehrhardtharald attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease AT rottierrobbertj attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease AT ahnertpeter attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease AT gortnerludwig attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease AT desaitusharj attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease AT hilgendorffanne attenuatedpdgfsignalingdrivesalveolarandmicrovasculardefectsinneonatalchroniclungdisease |