Cargando…
Inhibition of nonenzymatic depurination of nucleic acids by polycations
DNA base depurination is one of the most common forms of DNA damage in vivo and in vitro, and the suppression of depurination is very important for versatile applications of DNA in biotechnology and medicine. In this work, it was shown that the polycations chitosan (Cho) and spermine (Spm) strongly...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666391/ https://www.ncbi.nlm.nih.gov/pubmed/29123979 http://dx.doi.org/10.1002/2211-5463.12308 |
_version_ | 1783275302203424768 |
---|---|
author | An, Ran Dong, Ping Komiyama, Makoto Pan, Xiaoming Liang, Xingguo |
author_facet | An, Ran Dong, Ping Komiyama, Makoto Pan, Xiaoming Liang, Xingguo |
author_sort | An, Ran |
collection | PubMed |
description | DNA base depurination is one of the most common forms of DNA damage in vivo and in vitro, and the suppression of depurination is very important for versatile applications of DNA in biotechnology and medicine. In this work, it was shown that the polycations chitosan (Cho) and spermine (Spm) strongly inhibit DNA depurination through the formation of polyion complexes with DNA molecules. The intramolecular electrostatic interaction of positively charged polycations with DNA efficiently suppresses the protonation of purine groups, which is the key step of depurination. Importantly, the optimal pH for Cho's inhibition of depurination is significantly different from that of Spm. Cho is very effective in the inhibition of depurination in highly acidic media (pH: 1.5–3), whereas Spm is found to suppress the chemical reaction near neutral pH, as well as in acidic solutions. This remarkable pH specificity of the two biorelevant polycations is attributed to the difference in the pK (a) values of the amino groups. The relevance of our results with the biological roles of biogenic polycations is also discussed. |
format | Online Article Text |
id | pubmed-5666391 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-56663912017-11-09 Inhibition of nonenzymatic depurination of nucleic acids by polycations An, Ran Dong, Ping Komiyama, Makoto Pan, Xiaoming Liang, Xingguo FEBS Open Bio Research Articles DNA base depurination is one of the most common forms of DNA damage in vivo and in vitro, and the suppression of depurination is very important for versatile applications of DNA in biotechnology and medicine. In this work, it was shown that the polycations chitosan (Cho) and spermine (Spm) strongly inhibit DNA depurination through the formation of polyion complexes with DNA molecules. The intramolecular electrostatic interaction of positively charged polycations with DNA efficiently suppresses the protonation of purine groups, which is the key step of depurination. Importantly, the optimal pH for Cho's inhibition of depurination is significantly different from that of Spm. Cho is very effective in the inhibition of depurination in highly acidic media (pH: 1.5–3), whereas Spm is found to suppress the chemical reaction near neutral pH, as well as in acidic solutions. This remarkable pH specificity of the two biorelevant polycations is attributed to the difference in the pK (a) values of the amino groups. The relevance of our results with the biological roles of biogenic polycations is also discussed. John Wiley and Sons Inc. 2017-09-22 /pmc/articles/PMC5666391/ /pubmed/29123979 http://dx.doi.org/10.1002/2211-5463.12308 Text en © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles An, Ran Dong, Ping Komiyama, Makoto Pan, Xiaoming Liang, Xingguo Inhibition of nonenzymatic depurination of nucleic acids by polycations |
title | Inhibition of nonenzymatic depurination of nucleic acids by polycations |
title_full | Inhibition of nonenzymatic depurination of nucleic acids by polycations |
title_fullStr | Inhibition of nonenzymatic depurination of nucleic acids by polycations |
title_full_unstemmed | Inhibition of nonenzymatic depurination of nucleic acids by polycations |
title_short | Inhibition of nonenzymatic depurination of nucleic acids by polycations |
title_sort | inhibition of nonenzymatic depurination of nucleic acids by polycations |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666391/ https://www.ncbi.nlm.nih.gov/pubmed/29123979 http://dx.doi.org/10.1002/2211-5463.12308 |
work_keys_str_mv | AT anran inhibitionofnonenzymaticdepurinationofnucleicacidsbypolycations AT dongping inhibitionofnonenzymaticdepurinationofnucleicacidsbypolycations AT komiyamamakoto inhibitionofnonenzymaticdepurinationofnucleicacidsbypolycations AT panxiaoming inhibitionofnonenzymaticdepurinationofnucleicacidsbypolycations AT liangxingguo inhibitionofnonenzymaticdepurinationofnucleicacidsbypolycations |