Cargando…

A new multiple robot path planning algorithm: dynamic distributed particle swarm optimization

Multiple robot systems have become a major study concern in the field of robotic research. Their control becomes unreliable and even infeasible if the number of robots increases. In this paper, a new dynamic distributed particle swarm optimization (D(2)PSO) algorithm is proposed for trajectory path...

Descripción completa

Detalles Bibliográficos
Autores principales: Ayari, Asma, Bouamama, Sadok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668356/
https://www.ncbi.nlm.nih.gov/pubmed/29152449
http://dx.doi.org/10.1186/s40638-017-0062-6
Descripción
Sumario:Multiple robot systems have become a major study concern in the field of robotic research. Their control becomes unreliable and even infeasible if the number of robots increases. In this paper, a new dynamic distributed particle swarm optimization (D(2)PSO) algorithm is proposed for trajectory path planning of multiple robots in order to find collision-free optimal path for each robot in the environment. The proposed approach consists in calculating two local optima detectors, LOD(pBest) and LOD(gBest). Particles which are unable to improve their personal best and global best for predefined number of successive iterations would be replaced with restructured ones. Stagnation and local optima problems would be avoided by adding diversity to the population, without losing the fast convergence characteristic of PSO. Experiments with multiple robots are provided and proved effectiveness of such approach compared with the distributed PSO.