Cargando…
Accounting for GC-content bias reduces systematic errors and batch effects in ChIP-seq data
The main application of ChIP-seq technology is the detection of genomic regions that bind to a protein of interest. A large part of functional genomics’ public catalogs is based on ChIP-seq data. These catalogs rely on peak calling algorithms that infer protein-binding sites by detecting genomic reg...
Autores principales: | Teng, Mingxiang, Irizarry, Rafael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668949/ https://www.ncbi.nlm.nih.gov/pubmed/29025895 http://dx.doi.org/10.1101/gr.220673.117 |
Ejemplares similares
-
Characterizing batch effects and binding site-specific variability in ChIP-seq data
por: Teng, Mingxiang, et al.
Publicado: (2021) -
MM-ChIP enables integrative analysis of cross-platform and between-laboratory ChIP-chip or ChIP-seq data
por: Chen, Yiwen, et al.
Publicado: (2011) -
ChIP-PED enhances the analysis of ChIP-seq and ChIP-chip data
por: Wu, George, et al.
Publicado: (2013) -
De novo ChIP-seq analysis
por: He, Xin, et al.
Publicado: (2015) -
HyperChIP: identification of hypervariable signals across ChIP-seq or ATAC-seq samples
por: Chen, Haojie, et al.
Publicado: (2022)