Cargando…

Photocontrol of the GTPase activity of the small G protein K-Ras by using an azobenzene derivative

The small G protein Ras is a central regulator of cellular signal transduction processes, functioning as a molecular switch. Switch mechanisms utilizing conformational changes in nucleotide-binding motifs have been well studied at the molecular level. Azobenzene is a photochromic molecule that under...

Descripción completa

Detalles Bibliográficos
Autores principales: Iwata, Seigo, Maruta, Shinsaku
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5669354/
https://www.ncbi.nlm.nih.gov/pubmed/29124213
http://dx.doi.org/10.1016/j.bbrep.2015.10.002
Descripción
Sumario:The small G protein Ras is a central regulator of cellular signal transduction processes, functioning as a molecular switch. Switch mechanisms utilizing conformational changes in nucleotide-binding motifs have been well studied at the molecular level. Azobenzene is a photochromic molecule that undergoes rapid and reversible isomerization between the cis and trans forms upon exposure to ultraviolet and visible light irradiation, respectively. Here, we introduced the sulfhydryl-reactive azobenzene derivative 4-phenylazophenyl maleimide (PAM) into the nucleotide-binding motif of Ras to regulate the GTPase activity by photoirradiation. We prepared four Ras mutants (G12C, Y32C, I36C, and Y64C) that have a single reactive cysteine residue in the nucleotide-binding motif. PAM was stoichiometrically incorporated into the cysteine residue of the mutants. The PAM-modified mutants exhibited reversible alterations in GTPase activity, nucleotide exchange rate, and interaction between guanine nucleotide exchange factor and Ras, accompanied by photoisomerization upon exposure to ultraviolet and visible light irradiation. The results suggest that incorporation of photochromic molecules into its nucleotide-binding motif enables photoreversible control of the function of the small G protein Ras.