Cargando…
f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq
Single-cell RNA-sequencing (scRNA-seq) allows studying heterogeneity in gene expression in large cell populations. Such heterogeneity can arise due to technical or biological factors, making decomposing sources of variation difficult. We here describe f-scLVM (factorial single-cell latent variable m...
Autores principales: | Buettner, Florian, Pratanwanich, Naruemon, McCarthy, Davis J., Marioni, John C., Stegle, Oliver |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5674756/ https://www.ncbi.nlm.nih.gov/pubmed/29115968 http://dx.doi.org/10.1186/s13059-017-1334-8 |
Ejemplares similares
-
CellRegMap: a statistical framework for mapping context‐specific regulatory variants using scRNA‐seq
por: Cuomo, Anna S E, et al.
Publicado: (2022) -
Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference
por: Huang, Yuanhua, et al.
Publicado: (2019) -
Metacell-2: a divide-and-conquer metacell algorithm for scalable scRNA-seq analysis
por: Ben-Kiki, Oren, et al.
Publicado: (2022) -
Multi‐Omics Factor Analysis—a framework for unsupervised integration of multi‐omics data sets
por: Argelaguet, Ricard, et al.
Publicado: (2018) -
scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously
por: Zhang, Ziqi, et al.
Publicado: (2022)