Cargando…

Modulation of cabozantinib efficacy by the prostate tumor microenvironment

The tumor microenvironment (TME) is increasingly recognized as the arbiter of metastatic progression and drug resistance in advanced prostate cancer (PCa). Cabozantinib is a potent tyrosine kinase inhibitor (TKI) with reported biological activity in the PCa epithelia, but failed to provide an overal...

Descripción completa

Detalles Bibliográficos
Autores principales: Tripathi, Manisha, Nandana, Srinivas, Billet, Sandrine, Cavassani, Karen A., Mishra, Rajeev, Chung, Leland W.K., Posadas, Edwin M., Bhowmick, Neil A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5675680/
https://www.ncbi.nlm.nih.gov/pubmed/29152128
http://dx.doi.org/10.18632/oncotarget.21248
Descripción
Sumario:The tumor microenvironment (TME) is increasingly recognized as the arbiter of metastatic progression and drug resistance in advanced prostate cancer (PCa). Cabozantinib is a potent tyrosine kinase inhibitor (TKI) with reported biological activity in the PCa epithelia, but failed to provide an overall survival benefit in phase 3 clinical trials. However, the promising biologic efficacy of the drug in early trials warranted a better understanding of the mechanism of action, with the goal of improving patient selection for TKI-based therapy such as cabozantinib. We found a 100-fold lower cabozantinib IC(50) in macrophages, PCa associated fibroblasts, and bone marrow fibroblasts compared to PCa epithelia. In PCa mouse models, pre-treatment with cabozantinib potentiated osseous and visceral tumor engraftment, suggesting a pro-tumorigenic host response to the drug. We further found that the host effects of cabozantinib impacted bone turnover, but not necessarily tumor expansion. Cabozantinib affected M1 macrophage polarization in mice. Analogously, circulating monocytes from PCa patients treated with cabozantinib, demonstrated a striking correlation of monocyte reprograming with therapeutic bone responsivity, to support patient selection at early stages of treatment. Thus, a re-evaluation of TKI-based therapeutic strategies in PCa can be considered for suitable patient populations based on TME responses.