Cargando…
Improving the Accuracy and Training Speed of Motor Imagery Brain–Computer Interfaces Using Wavelet-Based Combined Feature Vectors and Gaussian Mixture Model-Supervectors
In this paper, we propose a set of wavelet-based combined feature vectors and a Gaussian mixture model (GMM)-supervector to enhance training speed and classification accuracy in motor imagery brain–computer interfaces. The proposed method is configured as follows: first, wavelet transforms are appli...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677306/ https://www.ncbi.nlm.nih.gov/pubmed/28991172 http://dx.doi.org/10.3390/s17102282 |