Cargando…
Improving the Accuracy and Training Speed of Motor Imagery Brain–Computer Interfaces Using Wavelet-Based Combined Feature Vectors and Gaussian Mixture Model-Supervectors
In this paper, we propose a set of wavelet-based combined feature vectors and a Gaussian mixture model (GMM)-supervector to enhance training speed and classification accuracy in motor imagery brain–computer interfaces. The proposed method is configured as follows: first, wavelet transforms are appli...
Autores principales: | Lee, David, Park, Sang-Hoon, Lee, Sang-Goog |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677306/ https://www.ncbi.nlm.nih.gov/pubmed/28991172 http://dx.doi.org/10.3390/s17102282 |
Ejemplares similares
-
Application of Continuous Wavelet Transform and Convolutional Neural Network in Decoding Motor Imagery Brain-Computer Interface
por: Lee, Hyeon Kyu, et al.
Publicado: (2019) -
Motor Imagery Development in Children: Changes in Speed and Accuracy With Increasing Age
por: Souto, Deisiane Oliveira, et al.
Publicado: (2020) -
Multiple-Antenna Cooperative Spectrum Sensing Based on the Wavelet Transform and Gaussian Mixture Model
por: Zhang, Shunchao, et al.
Publicado: (2019) -
An Intelligent Motor Imagery Detection System Using Electroencephalography with Adaptive Wavelets
por: Khare, Smith K., et al.
Publicado: (2022) -
The Differences Between Motor Attempt and Motor Imagery in Brain-Computer Interface Accuracy and Event-Related Desynchronization of Patients With Hemiplegia
por: Chen, Shugeng, et al.
Publicado: (2021)