Cargando…
A Weighted Measurement Fusion Particle Filter for Nonlinear Multisensory Systems Based on Gauss–Hermite Approximation
We addressed the fusion estimation problem for nonlinear multisensory systems. Based on the Gauss–Hermite approximation and weighted least square criterion, an augmented high-dimension measurement from all sensors was compressed into a lower dimension. By combining the low-dimension measurement func...
Autores principales: | Li, Yun, Sun, Shu Li, Hao, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677455/ https://www.ncbi.nlm.nih.gov/pubmed/28956862 http://dx.doi.org/10.3390/s17102222 |
Ejemplares similares
-
Weighted Measurement Fusion Particle Filter for Nonlinear Systems with Correlated Noises
por: Zhang, Ke Wei, et al.
Publicado: (2018) -
A Characterization of the Compound Multiparameter Hermite Gamma Distribution via Gauss's Principle
por: Hürlimann, Werner
Publicado: (2013) -
Support and approximation properties of Hermite splines
por: Fageot, Julien, et al.
Publicado: (2020) -
Laplace approximation, penalized quasi-likelihood, and adaptive Gauss–Hermite quadrature for generalized linear mixed models: towards meta-analysis of binary outcome with sparse data
por: Ju, Ke, et al.
Publicado: (2020) -
Approximate nonlinear filtering with a recurrent neural network
por: Kutschireiter, Anna, et al.
Publicado: (2015)