Cargando…

Highly selective nickel-catalyzed gem-difluoropropargylation of unactivated alkylzinc reagents

In spite of the important applications of difluoroalkylated molecules in medicinal chemistry, to date, the reaction of difluoroalkylating reagents with unactivated, aliphatic substrates through a controllable manner remains challenging and has not been reported. Here we describe an efficient nickel-...

Descripción completa

Detalles Bibliográficos
Autores principales: An, Lun, Xu, Chang, Zhang, Xingang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684216/
https://www.ncbi.nlm.nih.gov/pubmed/29133781
http://dx.doi.org/10.1038/s41467-017-01540-1
Descripción
Sumario:In spite of the important applications of difluoroalkylated molecules in medicinal chemistry, to date, the reaction of difluoroalkylating reagents with unactivated, aliphatic substrates through a controllable manner remains challenging and has not been reported. Here we describe an efficient nickel-catalyzed cross-coupling of unactivated alkylzinc reagen\ts with gem-difluoropropargyl bromides. The reaction proceeds under mild reaction conditions with high efficiency and excellent regiochemical selectivity. Transformations of the resulting difluoroalkylated alkanes lead to a variety of biologically active molecules, providing a facile route for applications in drug discovery and development. Preliminary mechanistic studies reveal that an alkyl nickel intermediate [Ni(tpy)alkyl] (tpy, terpyridine) is involved in the catalytic cycle.