Cargando…
Point cloud registration from local feature correspondences—Evaluation on challenging datasets
Registration of laser scans, or point clouds in general, is a crucial step of localization and mapping with mobile robots or in object modeling pipelines. A coarse alignment of the point clouds is generally needed before applying local methods such as the Iterative Closest Point (ICP) algorithm. We...
Autores principales: | Petricek, Tomas, Svoboda, Tomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685596/ https://www.ncbi.nlm.nih.gov/pubmed/29136000 http://dx.doi.org/10.1371/journal.pone.0187943 |
Ejemplares similares
-
Automatic point cloud registration algorithm based on the feature histogram of local surface
por: Lu, Jun, et al.
Publicado: (2020) -
A Two-Stage Correspondence-Free Algorithm for Partially Overlapping Point Cloud Registration
por: Zhang, Wenhao, et al.
Publicado: (2022) -
Self-Supervised Point Set Local Descriptors for Point Cloud Registration
por: Yuan, Yijun, et al.
Publicado: (2021) -
Feature Consistent Point Cloud Registration in Building Information Modeling
por: Jiang, Hengyu, et al.
Publicado: (2022) -
Point cloud registration of arrester based on scale-invariant points feature histogram
por: Zhu, Wen, et al.
Publicado: (2022)