Cargando…

MYC is downregulated by a mitochondrial checkpoint mechanism

The MYC proto-oncogene serves as a rheostat coupling mitogenic signaling with the activation of genes regulating growth, metabolism and mitochondrial biogenesis. Here we describe a novel link between mitochondria and MYC levels. Perturbation of mitochondrial function using a number of conventional a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiaonan, Mofers, Arjan, Hydbring, Per, Olofsson, Maria Hägg, Guo, Jing, Linder, Stig, D'Arcy, Padraig
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685744/
https://www.ncbi.nlm.nih.gov/pubmed/29163823
http://dx.doi.org/10.18632/oncotarget.21653
Descripción
Sumario:The MYC proto-oncogene serves as a rheostat coupling mitogenic signaling with the activation of genes regulating growth, metabolism and mitochondrial biogenesis. Here we describe a novel link between mitochondria and MYC levels. Perturbation of mitochondrial function using a number of conventional and novel inhibitors resulted in the decreased expression of MYC mRNA. This decrease in MYC mRNA occurred concomitantly with an increase in the levels of tumor-suppressive miRNAs such as members of the let-7 family and miR-34a-5p. Knockdown of let-7 family or miR-34a-5p could partially restore MYC levels following mitochondria damage. We also identified let-7-dependent downregulation of the MYC mRNA chaperone, CRD-BP (coding region determinant-binding protein) as an additional control following mitochondria damage. Our data demonstrates the existence of a homeostasis mechanism whereby mitochondrial function controls MYC expression.