Cargando…
An automated sampling importance resampling procedure for estimating parameter uncertainty
Quantifying the uncertainty around endpoints used for decision-making in drug development is essential. In nonlinear mixed-effects models (NLMEM) analysis, this uncertainty is derived from the uncertainty around model parameters. Different methods to assess parameter uncertainty exist, but scrutiny...
Autores principales: | Dosne, Anne-Gaëlle, Bergstrand, Martin, Karlsson, Mats O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686280/ https://www.ncbi.nlm.nih.gov/pubmed/28887735 http://dx.doi.org/10.1007/s10928-017-9542-0 |
Ejemplares similares
-
Improving the estimation of parameter uncertainty distributions in nonlinear mixed effects models using sampling importance resampling
por: Dosne, Anne-Gaëlle, et al.
Publicado: (2016) -
A strategy for residual error modeling incorporating scedasticity of variance and distribution shape
por: Dosne, Anne-Gaëlle, et al.
Publicado: (2015) -
dOFV distributions: a new diagnostic for the adequacy of parameter uncertainty in nonlinear mixed-effects models applied to the bootstrap
por: Dosne, Anne-Gaëlle, et al.
Publicado: (2016) -
Assessing parameter uncertainty in small-n pharmacometric analyses: value of the log-likelihood profiling-based sampling importance resampling (LLP-SIR) technique
por: Broeker, Astrid, et al.
Publicado: (2020) -
Resampling procedures to identify important SNPs using a consensus approach
por: Pardy, Christopher, et al.
Publicado: (2011)