Cargando…
Simultaneous analysis of allopurinol and oxypurinol using a validated liquid chromatography–tandem mass spectrometry method in human plasma
The present study describes a simple, reliable and reproducible liquid chromatography–tandem mass spectrometry method (LC–MS/MS) for the simultaneous determination of allopurinol and its active metabolite, oxypurinol in human plasma for a pharmacokinetic/bioequivalence study. After protein precipita...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Xi'an Jiaotong University
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686867/ https://www.ncbi.nlm.nih.gov/pubmed/29404018 http://dx.doi.org/10.1016/j.jpha.2016.05.005 |
_version_ | 1783278853448269824 |
---|---|
author | Rathod, Dhiraj M. Patel, Keyur R. Mistri, Hiren N. Jangid, Arvind G. Shrivastav, Pranav S. Sanyal, Mallika |
author_facet | Rathod, Dhiraj M. Patel, Keyur R. Mistri, Hiren N. Jangid, Arvind G. Shrivastav, Pranav S. Sanyal, Mallika |
author_sort | Rathod, Dhiraj M. |
collection | PubMed |
description | The present study describes a simple, reliable and reproducible liquid chromatography–tandem mass spectrometry method (LC–MS/MS) for the simultaneous determination of allopurinol and its active metabolite, oxypurinol in human plasma for a pharmacokinetic/bioequivalence study. After protein precipitation (PPT) of 100 µL plasma sample with 1.0% formic acid in acetonitrile, the recovery of the analytes and allopurinol-d2 as an internal standard ranged from 85.36% to 91.20%. The analytes were separated on Hypersil Gold (150 mm×4.6 mm, 5 µm) column using 0.1% formic acid-acetonitrile (98:2, v/v) as the mobile phase. Quantification was done using electrospray ionization in the positive mode. The calibration concentration range was established from 60.0 to 6000 ng/mL for allopurinol and 80.0–8000 ng/mL for oxypurinol. Matrix effect in human plasma, expressed as IS-normalized matrix factors ranged from 1.003 to 1.030 for both the analytes. The developed method was found suitable for a clinical study with 300 mg allopurinol tablet formulation in healthy subjects. |
format | Online Article Text |
id | pubmed-5686867 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Xi'an Jiaotong University |
record_format | MEDLINE/PubMed |
spelling | pubmed-56868672018-02-05 Simultaneous analysis of allopurinol and oxypurinol using a validated liquid chromatography–tandem mass spectrometry method in human plasma Rathod, Dhiraj M. Patel, Keyur R. Mistri, Hiren N. Jangid, Arvind G. Shrivastav, Pranav S. Sanyal, Mallika J Pharm Anal Original Research Article The present study describes a simple, reliable and reproducible liquid chromatography–tandem mass spectrometry method (LC–MS/MS) for the simultaneous determination of allopurinol and its active metabolite, oxypurinol in human plasma for a pharmacokinetic/bioequivalence study. After protein precipitation (PPT) of 100 µL plasma sample with 1.0% formic acid in acetonitrile, the recovery of the analytes and allopurinol-d2 as an internal standard ranged from 85.36% to 91.20%. The analytes were separated on Hypersil Gold (150 mm×4.6 mm, 5 µm) column using 0.1% formic acid-acetonitrile (98:2, v/v) as the mobile phase. Quantification was done using electrospray ionization in the positive mode. The calibration concentration range was established from 60.0 to 6000 ng/mL for allopurinol and 80.0–8000 ng/mL for oxypurinol. Matrix effect in human plasma, expressed as IS-normalized matrix factors ranged from 1.003 to 1.030 for both the analytes. The developed method was found suitable for a clinical study with 300 mg allopurinol tablet formulation in healthy subjects. Xi'an Jiaotong University 2017-02 2016-05-26 /pmc/articles/PMC5686867/ /pubmed/29404018 http://dx.doi.org/10.1016/j.jpha.2016.05.005 Text en © 2017 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Article Rathod, Dhiraj M. Patel, Keyur R. Mistri, Hiren N. Jangid, Arvind G. Shrivastav, Pranav S. Sanyal, Mallika Simultaneous analysis of allopurinol and oxypurinol using a validated liquid chromatography–tandem mass spectrometry method in human plasma |
title | Simultaneous analysis of allopurinol and oxypurinol using a validated liquid chromatography–tandem mass spectrometry method in human plasma |
title_full | Simultaneous analysis of allopurinol and oxypurinol using a validated liquid chromatography–tandem mass spectrometry method in human plasma |
title_fullStr | Simultaneous analysis of allopurinol and oxypurinol using a validated liquid chromatography–tandem mass spectrometry method in human plasma |
title_full_unstemmed | Simultaneous analysis of allopurinol and oxypurinol using a validated liquid chromatography–tandem mass spectrometry method in human plasma |
title_short | Simultaneous analysis of allopurinol and oxypurinol using a validated liquid chromatography–tandem mass spectrometry method in human plasma |
title_sort | simultaneous analysis of allopurinol and oxypurinol using a validated liquid chromatography–tandem mass spectrometry method in human plasma |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686867/ https://www.ncbi.nlm.nih.gov/pubmed/29404018 http://dx.doi.org/10.1016/j.jpha.2016.05.005 |
work_keys_str_mv | AT rathoddhirajm simultaneousanalysisofallopurinolandoxypurinolusingavalidatedliquidchromatographytandemmassspectrometrymethodinhumanplasma AT patelkeyurr simultaneousanalysisofallopurinolandoxypurinolusingavalidatedliquidchromatographytandemmassspectrometrymethodinhumanplasma AT mistrihirenn simultaneousanalysisofallopurinolandoxypurinolusingavalidatedliquidchromatographytandemmassspectrometrymethodinhumanplasma AT jangidarvindg simultaneousanalysisofallopurinolandoxypurinolusingavalidatedliquidchromatographytandemmassspectrometrymethodinhumanplasma AT shrivastavpranavs simultaneousanalysisofallopurinolandoxypurinolusingavalidatedliquidchromatographytandemmassspectrometrymethodinhumanplasma AT sanyalmallika simultaneousanalysisofallopurinolandoxypurinolusingavalidatedliquidchromatographytandemmassspectrometrymethodinhumanplasma |