Cargando…
Rescue of high-specificity Cas9 variants using sgRNAs with matched 5’ nucleotides
We report that engineered Cas9 variants with improved specificity—eCas9-1.1 and Cas9-HF1—are often poorly active in human cells, when complexed with single guide RNAs (sgRNAs) with a mismatch at the 5’ terminus, relative to target DNA sequences. Because the nucleotide at the 5’ end of sgRNAs, expres...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686910/ https://www.ncbi.nlm.nih.gov/pubmed/29141659 http://dx.doi.org/10.1186/s13059-017-1355-3 |
Sumario: | We report that engineered Cas9 variants with improved specificity—eCas9-1.1 and Cas9-HF1—are often poorly active in human cells, when complexed with single guide RNAs (sgRNAs) with a mismatch at the 5’ terminus, relative to target DNA sequences. Because the nucleotide at the 5’ end of sgRNAs, expressed under the control of the commonly-used U6 promoter, is fixed to a guanine, these attenuated Cas9 variants are not useful at many target sites. By using sgRNAs with matched 5’ nucleotides, produced by linking them to a self-cleaving ribozyme, the editing activity of Cas9 variants can be rescued without sacrificing high specificity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-017-1355-3) contains supplementary material, which is available to authorized users. |
---|